ﻻ يوجد ملخص باللغة العربية
The field of exoplanets is quickly expanding from just the detection of new planets and the measurement of their most basic parameters, such as mass, radius and orbital configuration, to the first measurements of their atmospheric characteristics, such as temperature, chemical composition, albedo, dynamics and structure. Here I will overview some of the main findings on exoplanet atmospheres until September 2010, first from space and just in the past two years also from the ground.
In this paper, we present the empirical investigation results on the neuroendocrine system by bipartite graphs. This neuroendocrine network model can describe the structural characteristic of neuroendocrine system. The act degree distribution and cum
Observations of exoplanet atmospheres have shown that aerosols, like in the Solar System, are common across a variety of temperatures and planet types. The formation and distribution of these aerosols are inextricably intertwined with the composition
Clouds and hazes are commonplace in the atmospheres of solar system planets and are likely ubiquitous in the atmospheres of extrasolar planets as well. Clouds affect every aspect of a planetary atmosphere, from the transport of radiation, to atmosphe
We present an improved, hybrid CPU-GPU atmospheric retrieval code, Helios-r2, which is applicable to medium-resolution emission spectra of brown dwarfs, in preparation for precision atmospheric spectroscopy in the era of the James Webb Space Telescop
A long-term goal of exoplanet studies is the identification and detection of biosignature gases. Beyond the most discussed biosignature gas O$_2$, only a handful of gases have been considered in detail. Here we evaluate phosphine (PH$_3$). On Earth,