ﻻ يوجد ملخص باللغة العربية
Meson properties at finite temperature and density are studied in lattice QCD simulations with two-flavor Wilson fermions. For this purpose, we investigate screening masses of mesons in pseudo-scalar (PS) and vector (V) channels. The simulations are performed on $16^3times 4$ lattice along the lines of constant physics at $m_{rm PS}/m_{rm V}|_{T=0}=0.65$ and 0.80, where $m_{rm PS}/m_{rm V}|_{T=0}$ is a ratio of meson masses in PS and V channels at $T=0$. A temperature range is $T/T_{rm pc}=(0.8 - 4.0)$, where $T_{rm pc}$ is the pseudo-critical temperature. We find that the temperature dependence of the screening masses normalized by temperature, $M_0/T$, shows notable structure around $T_{rm pc}$, and approach $2pi$ at high temperature in both channels, which is consistent with twice the thermal mass of a free quark in high temperature limit. The screening masses at low density are also investigated by using the Taylor expansion method with respect to the quark chemical potential. We find that the expansion coefficients in the leading order become positive in the temperature range, and thermal and density effect on the meson screening-masses becomes apparent in the quark-gluon plasma phase. The meson screening-masses are also compared with the gluon (Debye) screening masses at finite temperature and density.
We investigate chemical-potential (mu) dependence of static-quark free energies in both the real and imaginary mu regions, performing lattice QCD simulations at imaginary mu and extrapolating the results to the real mu region with analytic continuati
We study the equation of state at finite temperature and density in two-flavor QCD with the RG-improved gluon action and the clover-improved Wilson quark action on a $ 16^3 times 4$ lattice. Along the lines of constant physics at $m_{rm PS}/m_{rm V}
We study the curvature of the chiral transition/crossover line between the low-temperature hadronic phase and the high-temperature quark-gluon-plasma phase at low densities, performing simulations of two-flavor QCD with improved Wilson quarks. After
We study the equation of state in two-flavor QCD at finite temperature and density. Simulations are made with the RG-improved gluon action and the clover-improved Wilson quark action. Along the lines of constant physics for $m_{rm PS}/m_{rm V} = 0.65
In this letter we report on a numerical investigation of the Aoki phase in the case of finite temperature which continues our former study at zero temperature. We have performed simulations with Wilson fermions at $beta=4.6$ using lattices with tempo