ﻻ يوجد ملخص باللغة العربية
We analyze the attosecond electron dynamics in hydrogen molecular ion driven by an external intense laser field using ab-initio numerical simulations of the corresponding time-dependent Schr{{o}}dinger equation and Bohmian trajectories. To this end, we employ a one-dimensional model of the molecular ion in which the motion of the protons is frozen. The results of the Bohmian trajectory calculations do agree well with those of the ab-initio simulations and clearly visualize the electron transfer between the two protons in the field. In particular, the Bohmian trajectory calculations confirm the recently predicted attosecond transient localization of the electron at one of the protons and the related multiple bunches of the ionization current within a half cycle of the laser field. Further analysis based on the quantum trajectories shows that the electron dynamics in the molecular ion can be understood via the phase difference accumulated between the Coulomb wells at the two protons. Modeling of the dynamics using a simple two-state system leads us to an explanation for the sometimes counter-intuitive dynamics of an electron opposing the classical force of the electric field on the electron.
A theoretical justification of the empirical surface hopping method for the laser-driven molecular dynamics is given utilizing the formalism of the exact factorization of the molecular wavefunction [Abedi et al., PRL $textbf{105}$, 123002 (2010)] in
We introduce a combined molecular dynamics (MD) and quantum trajectories (QT) code to simulate the effects of near-resonant optical fields on state-vector evolution and particle motion in a collisional system. In contrast to collisionless systems, in
Bohmian mechanics is an interpretation of quantum mechanics that describes the motion of quantum particles with an ensemble of deterministic trajectories. Several attempts have been made to utilize Bohmian trajectories as a computational tool to simu
Laser pulses with stable electric field waveforms establish the opportunity to achieve coherent control on attosecond timescales. We present experimental and theoretical results on the steering of electronic motion in a multi-electron system. A very
Streaking of photoelectrons has long been used for the temporal characterization of attosecond extreme ultraviolet pulses. When the time-resolved photoelectrons originate from a coherent superposition of electronic states, they carry an additional ph