ترغب بنشر مسار تعليمي؟ اضغط هنا

Visualization and Interpretation of Attosecond Electron Dynamics in Laser-Driven Hydrogen Molecular Ion using Bohmian Trajectories

201   0   0.0 ( 0 )
 نشر من قبل Norio Takemoto
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the attosecond electron dynamics in hydrogen molecular ion driven by an external intense laser field using ab-initio numerical simulations of the corresponding time-dependent Schr{{o}}dinger equation and Bohmian trajectories. To this end, we employ a one-dimensional model of the molecular ion in which the motion of the protons is frozen. The results of the Bohmian trajectory calculations do agree well with those of the ab-initio simulations and clearly visualize the electron transfer between the two protons in the field. In particular, the Bohmian trajectory calculations confirm the recently predicted attosecond transient localization of the electron at one of the protons and the related multiple bunches of the ionization current within a half cycle of the laser field. Further analysis based on the quantum trajectories shows that the electron dynamics in the molecular ion can be understood via the phase difference accumulated between the Coulomb wells at the two protons. Modeling of the dynamics using a simple two-state system leads us to an explanation for the sometimes counter-intuitive dynamics of an electron opposing the classical force of the electric field on the electron.



قيم البحث

اقرأ أيضاً

A theoretical justification of the empirical surface hopping method for the laser-driven molecular dynamics is given utilizing the formalism of the exact factorization of the molecular wavefunction [Abedi et al., PRL $textbf{105}$, 123002 (2010)] in its quantum-classical limit. Employing an exactly solvable $textrm H_2^{;+}$-like model system, it is shown that the deterministic classical nuclear motion on a single time-dependent surface in this approach describes the same physics as stochastic (hopping-induced) motion on several surfaces, provided Floquet surfaces are applied. Both quantum-classical methods do describe reasonably well the exact nuclear wavepacket dynamics for extremely different dissociation scenarios. Hopping schemes using Born-Oppenheimer surfaces or instantaneous Born-Oppenheimer surfaces fail completely.
86 - G. M. Gorman 2019
We introduce a combined molecular dynamics (MD) and quantum trajectories (QT) code to simulate the effects of near-resonant optical fields on state-vector evolution and particle motion in a collisional system. In contrast to collisionless systems, in which the quantum dynamics of multi-level, laser-driven particles with spontaneous emission can be described with the optical Bloch equations (OBEs), particle velocities in sufficiently collisional systems change on timescales comparable to those of the laser-induced, quantum-state dynamics. These transient velocity changes can cause the time-averaged velocity dependence of the quantum state to differ from the OBE solution. We use this multiscale code to describe laser-cooling in a strontium ultracold neutral plasma. Important phenomena described by the simulation include suppression of electromagnetically induced transparencies through rapid velocity changing collisions and thermalization between cooled and un-cooled directions for anisotropic laser cooling.
Bohmian mechanics is an interpretation of quantum mechanics that describes the motion of quantum particles with an ensemble of deterministic trajectories. Several attempts have been made to utilize Bohmian trajectories as a computational tool to simu late quantum systems consisting of many particles, a very demanding computational task. In this paper, we present a novel ab-initio approach to solve the many-body problem for bosonic systems by evolving a system of one-particle wavefunctions representing pilot waves that guide the Bohmian trajectories of the quantum particles. In this approach, quantum entanglement effects arise due to the interactions between different configurations of Bohmian particles evolving simultaneously. The method is used to study the breathing dynamics and ground state properties in a system of interacting bosons.
Laser pulses with stable electric field waveforms establish the opportunity to achieve coherent control on attosecond timescales. We present experimental and theoretical results on the steering of electronic motion in a multi-electron system. A very high degree of light-waveform control over the directional emission of C+ and O+ fragments from the dissociative ionization of CO was observed. Ab initio based model calculations reveal contributions to the control related to the ionization and laser-induced population transfer between excited electronic states of CO+ during dissociation.
Streaking of photoelectrons has long been used for the temporal characterization of attosecond extreme ultraviolet pulses. When the time-resolved photoelectrons originate from a coherent superposition of electronic states, they carry an additional ph ase information, which can be retrieved by the streaking technique. In this contribution we extend the streaking formalism to include coupled electron and nuclear dynamics in molecules as well as initial coherences and demonstrate how it offers a novel tool to monitor non-adiabatic dynamics as it occurs in the vicinity of conical intersections and avoided crossings. Streaking can enhance the time resolution and provide direct signatures of electronic coherences, which affect many primary photochemical and biological events.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا