ﻻ يوجد ملخص باللغة العربية
Strong surface magnetic fields are ubiquitously found in M-dwarfs with mean intensities on the order of few thousand Gauss-three orders of magnitude higher than the mean surface magnetic field of the Sun. These fields and their interaction with photospheric convection are the main source of stellar activity, which is of big interest to study links between parent stars and their planets. Moreover, the understanding of stellar magnetism, as well as the role of different dynamo-actions in particular, is impossible without explaining magnetic fields in M-dwarfs. Measuring magnetic field intensities and geometries in such cool objects, however, is strongly limited to our ability to simulate the Zeeman effect in molecular lines. In this work, we present quantitative results of modelling and analysis of the magnetic fields in selected M-dwarfs in FeH Wing-Ford lines and strong atomic lines. Some particular FeH lines are found to be the excellent probes of the magnetic field.
Magnetic fields play a fundamental role for interior and atmospheric properties of M dwarfs and greatly influence terrestrial planets orbiting in the habitable zones of these low-mass stars. Determination of the strength and topology of magnetic fiel
We present synthetic FeH band spectra in the z-filter range for several M-dwarf models with logg=3.0-5.0 [cgs] and Teff=2800K -3450K. Our aim is to characterize convective velocities in M-dwarfs and to give a rough estimate of the range in which 3D-a
We present an investigation of the velocity fields in early to late M-type star hydrodynamic models, and we simulate their influence on FeH molecular line shapes. The M star model parameters range between log g of 3.0 - 5.0 and Teff of 2500 K and 400
The magnetic white dwarfs (MWDs) are found either isolated or in interacting binaries. They divide into two groups: a high field group (0.1-1,000MegaGauss) comprising some 13% of all white dwarfs (WDs), and a low field group (B<0.1MG) whose incidence
A dynamo mechanism driven by differential rotation when stars merge has been proposed to explain the presence of strong fields in certain classes of magnetic stars. In the case of the high field magnetic white dwarfs (HFMWDs), the site of the differe