ترغب بنشر مسار تعليمي؟ اضغط هنا

The HARPS search for southern extra-solar planets: XXVIII. Two giant planets around M0 dwarfs

153   0   0.0 ( 0 )
 نشر من قبل Thierry Forveille
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Thierry Forveille




اسأل ChatGPT حول البحث

Fewer giants planets are found around M dwarfs than around more massive stars, and this dependence of planetary characteristics on the mass of the central star is an important observational diagnostic of planetary formation theories. In part to improve on those statistics, we are monitoring the radial velocities of nearby M dwarfs with the HARPS spectrograph on the ESO 3.6 m telescope. We present here the detection of giant planets around two nearby M0 dwarfs: planets, with minimum masses of respectively 5 Jupiter masses and 1 Saturn mass, orbit around Gl 676A and HIP 12961. The latter is, by over a factor of two, the most massive planet found by radial velocity monitoring of an M dwarf, but its being found around an early M-dwarf is in approximate line with the upper envelope of the planetary vs stellar mass diagram. HIP 12961 ([Fe/H]=-0.07) is slightly more metal-rich than the average solar neighborhood ([Fe/H]=-0.17), and Gl 676A ([Fe/H=0.18) significantly so. The two stars together therefore reinforce the growing trend for giant planets being more frequent around more metal-rich M dwarfs, and the 5~Jupiter mass Gl 676Ab being found around a metal-rich star is consistent with the expectation that the most massive planets preferentially form in disks with large condensate masses.



قيم البحث

اقرأ أيضاً

Stellar metallicity -- as a probe of the metallicity of proto-planetary disks -- is an important ingredient for giant planet formation, likely through its effect on the timescales in which rocky/icy planet cores can form. Giant planets have been foun d to be more frequent around metal-rich stars, in agreement with predictions based on the core-accretion theory. In the metal-poor regime, however, the frequency of planets, especially low-mass planets, and how it depends on metallicity are still largely unknown. As part of a planet search programme focused on metal-poor stars, we study the targets from this survey that were observed with HARPS on more than 75 nights. The main goals are to assess the presence of low-mass planets and provide a first estimate of the frequency of Neptunes and super-Earths around metal-poor stars. We perform a systematic search for planetary companions, both by analysing the periodograms of the radial-velocities and by comparing, in a statistically-meaningful way, models with an increasing number of Keplerians. A first constraint on the frequency of planets in our metal-poor sample is calculated considering the previous detection (in our sample) of a Neptune-sized planet around HD175607 and one candidate planet (with an orbital period of 68.42d and minimum mass $M_p sin i = 11.14 pm 2.47 M_{oplus}$) for HD87838, announced in the present study. This frequency is determined to be close to 13% and is compared with results for solar-metallicity stars.
173 - X. Bonfils , X. Delfosse , S. Udry 2011
(Abridged) Searching for planets around stars with different masses probes the outcome of planetary formation for different initial conditions. This drives observations of a sample of 102 southern nearby M dwarfs, using a fraction of our guaranteed t ime on the ESO/HARPS spectrograph (Feb. 11th, 2003 to Apr. 1st 2009). This paper makes available the samples time series, presents their precision and variability. We apply systematic searches and diagnostics to discriminate whether the observed Doppler shifts are caused by stellar surface inhomogeneities or by the radial pull of orbiting planets. We recover the planetary signals corresponding to 9 planets already announced by our group (Gl176b, Gl581b, c, d & e, Gl674b, Gl433b, Gl 667Cb and c). We present radial velocities that confirm GJ 849 hosts a Jupiter-mass planet, plus a long-term radial-velocity variation. We also present RVs that precise the planetary mass and period of Gl 832b. We detect long-term RV changes for Gl 367, Gl 680 and Gl 880 betraying yet unknown long-period companions. We identify candidate signals in the radial-velocity time series and demonstrate they are most probably caused by stellar surface inhomogeneities. Finally, we derive a first estimate of the occurrence of M-dwarf planets as a function of their minimum mass and orbital period. In particular, we find that giant planets (m sin i = 100-1,000 Mearth) have a low frequency (e.g. f<1% for P=1-10 d and f=0.02^{+0.03}_{-0.01} for P=10-100 d), whereas super-Earths (m sin i = 1-10 Mearth) are likely very abundant (f=0.36^{+0.25}_{-0.10} for P=1-10 d and f=0.35^{+0.45}_{-0.11} for P=10-100 d). We also obtained eta_earth=0.41^{+0.54}_{-0.13}, the frequency of habitable planets orbiting M dwarfs (1<m sin i<10 Mearth). For the first time, eta_earth is a direct measure and not a number extrapolated from the statistic of more massive and/or shorter-period planets.
Context. Low mass stars are currently the best targets for searches for rocky planets in the habitable zone of their host star. Over the last 13 years, precise radial velocities measured with the HARPS spectrograph have identified over a dozen super- Earths and Earth-mass planets (msin i<10Mearth ) around M dwarfs, with a well understood selection function. This well defined sample informs on their frequency of occurrence and on the distribution of their orbital parameters, and therefore already constrains our understanding of planetary formation. The subset of these low-mass planets that were found within the habitable zone of their host star also provide prized targets for future atmospheric biomarkers searches. Aims. We are working to extend this planetary sample to lower masses and longer periods through dense and long-term monitoring of the radial velocity of a small M dwarf sample. Methods. We obtained large numbers of HARPS spectra for the M dwarfs GJ 3138, GJ 3323, GJ 273, GJ 628 and GJ 3293, from which we derived radial velocities (RVs) and spectroscopic activity indicators. We searched them for variabilities, periodicities, Keplerian modulations and correlations, and attribute the radial-velocity variations to combinations of planetary companions and stellar activity. Results. We detect 12 planets, of which 9 are new with masses ranging from 1.17 to 10.5 Mearth . Those planets have relatively short orbital periods (P<40 d), except two of them with periods of 217.6 and 257.8 days. Among these systems, GJ 273 harbor two planets with masses close to the one of the Earth. With a distance of 3.8 parsec only, GJ 273 is the second nearest known planetary system - after Proxima Centauri - with a planet orbiting the circumstellar habitable zone.
199 - N.C. Santos , M. Mayor , W. Benz 2009
We present the discovery of three new giant planets around three metal-deficient stars: HD5388b (1.96M_Jup), HD181720b (0.37M_Jup), and HD190984b (3.1M_Jup). All the planets have moderately eccentric orbits (ranging from 0.26 to 0.57) and long orbita l periods (from 777 to 4885 days). Two of the stars (HD181720 and HD190984) were part of a program searching for giant planets around a sample of ~100 moderately metal-poor stars, while HD5388 was part of the volume-limited sample of the HARPS GTO program. Our discoveries suggest that giant planets in long period orbits are not uncommon around moderately metal-poor stars.
We report the discovery of four super-Earth planets around HD 215152, with orbital periods of 5.76, 7.28, 10.86, and 25.2 d, and minimum masses of 1.8, 1.7, 2.8, and 2.9 M_Earth respectively. This discovery is based on 373 high-quality radial velocit y measurements taken by HARPS over 13 years. Given the low masses of the planets, the signal-to-noise ratio is not sufficient to constrain the planet eccentricities. However, a preliminary dynamical analysis suggests that eccentricities should be typically lower than about 0.03 for the system to remain stable. With two pairs of planets with a period ratio lower than 1.5, with short orbital periods, low masses, and low eccentricities, HD 215152 is similar to the very compact multi-planet systems found by Kepler, which is very rare in radial-velocity surveys. This discovery proves that these systems can be reached with the radial-velocity technique, but characterizing them requires a huge amount of observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا