ترغب بنشر مسار تعليمي؟ اضغط هنا

Interactive proofs with competing teams of no-signaling provers

171   0   0.0 ( 0 )
 نشر من قبل Gus Gutoski
 تاريخ النشر 2010
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Gus Gutoski




اسأل ChatGPT حول البحث

This paper studies a generalization of multi-prover interactive proofs in which a verifier interacts with two competing teams of provers: one team attempts to convince the verifier to accept while the other attempts to convince the verifier to reject. Each team consists of two provers who jointly implement a no-signaling strategy. No-signaling strategies are a curious class of joint strategy that cannot in general be implemented without communication between the provers, yet cannot be used as a black box to establish communication between them. Attention is restricted in this paper to two-turn interactions in which the verifier asks questions of each of the four provers and decides whether to accept or reject based on their responses. We prove that the complexity class of decision problems that admit two-turn interactive proofs with competing teams of no-signaling provers is a subset of PSPACE. This upper bound matches existing PSPACE lower bounds on the following two disparate and weaker classes of interactive proof: 1. Two-turn multi-prover interactive proofs with only one team of no-signaling provers. 2. Two-turn competing-prover interactive proofs with only one prover per team. Our result implies that the complexity of these two models is unchanged by the addition of a second competing team of no-signaling provers in the first case and by the addition of a second no-signaling prover to each team in the second case. Moreover, our result unifies and subsumes prior PSPACE upper bounds on these classes.



قيم البحث

اقرأ أيضاً

Multi Prover Interactive Proof systems (MIPs)were first presented in a cryptographic context, but ever since they were used in various fields. Understanding the power of MIPs in the quantum context raises many open problems, as there are several inte resting models to consider. For example, one can study the question when the provers share entanglement or not, and the communication between the verifier and the provers is quantum or classical. While there are several partial results on the subject, so far no one presented an efficient scheme for recognizing NEXP (or NP with logarithmic communication), except for [KM03], in the case there is no entanglement (and of course no communication between the provers). We introduce another variant of Quantum MIP, where the provers do not share entanglement, the communication between the verifier and the provers is quantum, but the provers are unlimited in the classical communication between them. At first, this model may seem very weak, as provers who exchange information seem to be equivalent in power to a simple prover. This in fact is not the case - we show that any language in NEXP can be recognized in this model efficiently, with just two provers and two rounds of communication, with a constant completeness-soundness gap.
The widely held belief that BQP strictly contains BPP raises fundamental questions: Upcoming generations of quantum computers might already be too large to be simulated classically. Is it possible to experimentally test that these systems perform as they should, if we cannot efficiently compute predictions for their behavior? Vazirani has asked: If predicting Quantum Mechanical systems requires exponential resources, is QM a falsifiable theory? In cryptographic settings, an untrusted future company wants to sell a quantum computer or perform a delegated quantum computation. Can the customer be convinced of correctness without the ability to compare results to predictions? To answer these questions, we define Quantum Prover Interactive Proofs (QPIP). Whereas in standard Interactive Proofs the prover is computationally unbounded, here our prover is in BQP, representing a quantum computer. The verifier models our current computational capabilities: it is a BPP machine, with access to few qubits. Our main theorem can be roughly stated as: Any language in BQP has a QPIP, and moreover, a fault tolerant one. We provide two proofs. The simpler one uses a new (possibly of independent interest) quantum authentication scheme (QAS) based on random Clifford elements. This QPIP however, is not fault tolerant. Our second protocol uses polynomial codes QAS due to BCGHS, combined with quantum fault tolerance and multiparty quantum computation techniques. A slight modification of our constructions makes the protocol blind: the quantum computation and input are unknown to the prover. After we have derived the results, we have learned that Broadbent at al. have independently derived universal blind quantum computation using completely different methods. Their construction implicitly implies similar implications.
The widely held belief that BQP strictly contains BPP raises fundamental questions: if we cannot efficiently compute predictions for the behavior of quantum systems, how can we test their behavior? In other words, is quantum mechanics falsifiable? In cryptographic settings, how can a customer of a future untrusted quantum computing company be convinced of the correctness of its quantum computations? To provide answers to these questions, we define Quantum Prover Interactive Proofs (QPIP). Whereas in standard interactive proofs the prover is computationally unbounded, here our prover is in BQP, representing a quantum computer. The verifier models our current computational capabilities: it is a BPP machine, with access to only a few qubits. Our main theorem states, roughly: Any language in BQP has a QPIP, which also hides the computation from the prover. We provide two proofs, one based on a quantum authentication scheme (QAS) relying on random Clifford rotations and the other based on a QAS which uses polynomial codes (BOCG+ 06), combined with secure multiparty computation methods. This is the journal version of work reported in 2008 (ABOE08) and presented in ICS 2010; here we have completed the details and made the proofs rigorous. Some of the proofs required major modifications and corrections. Notably, the claim that the polynomial QPIP is fault tolerant was removed. Similar results (with different protocols) were reported independently around the same time of the original version in BFK08. The initial independent works (ABOE08, BFK08) ignited a long line of research of blind verifiable quantum computation, which we survey here, along with connections to various cryptographic problems. Importantly, the problems of making the results fault tolerant as well as removing the need for quantum communication altogether remain open.
Pure states are very important in any theory since they represent states of maximal information about the system within the theory. Here, we show that no non-trivial (not local realistic) extremal states (boxes) of general no-signaling theories can b e realized within quantum theory. We then explore three interesting consequences of this fact. Firstly, since the pure states are uncorrelated from the environment, the statement forms a no-go result against the most straightforward device-independent protocol for randomness or secure key generation against general no-signaling adversaries. It also leads to the interesting question whether all non-extremal boxes allow for non-local correlations with the adversary. Secondly, in addition to the fact that new information-theoretic principles (designed to pick out the set of quantum correlations from among all non signaling ones) can in consequence be tested on arbitrary non-local vertices to check their validity, it also allows the possibility of excluding from the quantum set any box of no-signaling correlations that can be distilled to a non-local vertex. Finally, it also forms a sufficient condition to identify non-local games with no quantum winning strategy, when one can show that the game has a single unique non-signaling winning strategy. We illustrate each of these consequences with the example of generalized Popescu-Rohrlich boxes.
414 - Zhengfeng Ji 2016
We present a protocol that transforms any quantum multi-prover interactive proof into a nonlocal game in which questions consist of logarithmic number of bits and answers of constant number of bits. As a corollary, this proves that the promise proble m corresponding to the approximation of the nonlocal value to inverse polynomial accuracy is complete for QMIP*, and therefore NEXP-hard. This establishes that nonlocal games are provably harder than classical games without any complexity theory assumptions. Our result also indicates that gap amplification for nonlocal games may be impossible in general and provides a negative evidence for the possibility of the gap amplification approach to the multi-prover variant of the quantum PCP conjecture.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا