ﻻ يوجد ملخص باللغة العربية
Chemical abundances in solar-type stars are a much debated topic. Planet-hosting stars are known to be metal-rich, but whether or not this peculiarity applies also to the chemical composition of the outer stellar atmospheres is still to be clarified. More in general, coronal and photospheric abundances in late-type stars appear to be different in many cases, but understanding how chemical stratification effects work in stellar atmospheres requires an observational base larger than currently available. We obtained XMM-Newton high-resolution X-ray spectra of Tau Bootis, a well known nearby star with a Jovian-mass close-in planet. We analyzed these data with the aim to perform a detailed line-based emission measure analysis and derive the abundances of individual elements in the corona with two different methods applied independently. We compared the coronal abundances of Tau Bootis with published photospheric abundances based on high-resolution optical spectra and with those of other late-type stars with different magnetic activity levels, including the Sun. We find that the two methods provide consistent results within the statistical uncertainties for both the emission measure distribution of the hot plasma and for the coronal abundances, with discrepancies at the 2-sigma level limited to the amount of plasma at temperatures of 3-4 MK and to the O and Ni abundances. In both cases, the elements for which both coronal and photospheric measurements are available (C, N, O, Si, Fe, and Ni) result systematically less abundant in the corona by a factor 3 or more, with the exception of the coronal Ni abundance, which is similar to the photospheric value. Comparison with other late-type stars of similar activity level shows that these coronal/photospheric abundance ratios are peculiar to Tau Bootis and possibly related to the characteristic over-metallicity of this planet-hosting star.
We have been analyzing a large sample of solar-like stars with and without planets in order to homogeneously measure their photospheric parameters and Carbon abundances. Our sample contains around 200 stars in the solar neighborhood observed with the
We present six epochs of spectropolarimetric observations of the hot-Jupiter-hosting star $tau$ Bootis that extend the exceptional previous multi-year data set of its large-scale magnetic field. Our results confirm that the large-scale magnetic field
An extensive spectroscopic study on xi Boo A (chromospherically active solar-type star) was conducted based on the spectra obtained in 2008 December though 2010 May, with an aim to detect any spectrum variability and to understand its physical origin
A Rb deficiency by a factor two with respect to the Sun has been found in M dwarfs of solar metallicity. This deficiency is difficult to understand from both the observational and nucleosynthesis point of views. To test the reliability of this Rb def
It is well known that magnetic fields dominate the dynamics in the solar corona, and new generation of numerical modelling of the evolution of coronal magnetic fields, as featured with boundary conditions driven directly by observation data, are bein