ﻻ يوجد ملخص باللغة العربية
We predict a quantum phase transition in fcc Ca under hydrostatic pressure. Using density functional theory, we find at pressures below 80 kbar, the topology of the electron charge density is characterized by nearest neighbor atoms connected through bifurcated bond paths and deep minima in the octahedral holes. At pressures above 80 kbar, the atoms bond through non-nuclear maxima that form in the octahedral holes. This topological change in the charge density softens the C elastic modulus of fcc Ca, while C$_{44}$ remains unchanged. We propose an order parameter based on applying Morse theory to the charge density, and we show that near the critical point it follows the expected mean-field scaling law with reduced pressure.
Topological insulators (TI) are a phase of matter that host unusual metallic states on their surfaces. Unlike the states that exist on the surface of conventional materials, these so-called topological surfaces states (TSS) are protected against diso
Topological Weyl semimetals (TWSs) are exotic crystals possessing emergent relativistic Weyl fermions connected by unique surface Fermi-arcs (SFAs) in their electronic structures. To realize the TWS state, certain symmetry (such as the inversion or t
The interplay between various symmetries and electronic bands topology is one of the core issues for topological quantum materials. Spontaneous magnetism, which leads to the breaking of time-reversal symmetry, has been proven to be a powerful approac
Three-dimensional (3D) topological Dirac semimetal, when thinned down to 2D few layers, is expected to possess gapped Dirac nodes via quantum confinement effect and concomitantly display the intriguing quantum spin Hall (QSH) insulator phase. However
Recent progress in understanding the electronic band topology and emergent topological properties encourage us to reconsider the band structure of well-known materials including elemental substances. Controlling such a band topology by external field