ترغب بنشر مسار تعليمي؟ اضغط هنا

The thermal structure and the location of the snow line in the protosolar nebula: axisymmetric models with full 3-D radiative transfer

244   0   0.0 ( 0 )
 نشر من قبل Michiel Min
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The precise location of the water ice condensation front (snow line) in the protosolar nebula has been a debate for a long time. Its importance stems from the expected substantial jump in the abundance of solids beyond the snow line, which is conducive to planet formation, and from the higher stickiness in collisions of ice-coated dust grains, which may help the process of coagulation of dust and the formation of planetesimals. In an optically thin nebula, the location of the snow line is easily calculated to be around 3 AU. However, in its first 5 to 10 million years, the solar nebula was optically thick, implying a smaller snow line radius due to shielding from direct sunlight, but also a larger radius because of viscous heating. Several models have attempted to treat these opposing effects. However, until recently treatments beyond an approximate 1+1D radiative transfer were unfeasible. We revisit the problem with a fully self-consistent 3D treatment in an axisymmetric disk model, including a density-dependent treatment of the dust and ice sublimation. We find that the location of the snow line is very sensitive to the opacities of the dust grains and the mass accretion rate of the disk. We show that previous approximate treatments are quite efficient at determining the location of the snow line if the energy budget is locally dominated by viscous accretion. We derive an analytic estimate of the location of the snow line that compares very well with results from this and previous studies. Using solar abundances of the elements we compute the abundance of dust and ice and find that the expected jump in solid surface density at the snow line is smaller than previously assumed. We further show that in the inner few AU the refractory species are partly evaporated, leading to a significantly smaller solid state surface density in the regions where the rocky planets were formed.



قيم البحث

اقرأ أيضاً

79 - Oleg Korobkin 2020
The detailed observations of GW170817 proved for the first time directly that neutron star mergers are a major production site of heavy elements. The observations could be fit by a number of simulations that qualitatively agree, but can quantitativel y differ (e.g. in total r-process mass) by an order of magnitude. We categorize kilonova ejecta into several typical morphologies motivated by numerical simulations, and apply a radiative transfer Monte Carlo code to study how the geometric distribution of the ejecta shapes the emitted radiation. We find major impacts on both spectra and light curves. The peak bolometric luminosity can vary by two orders of magnitude and the timing of its peak by a factor of five. These findings provide the crucial implication that the ejecta masses inferred from observations around the peak brightness are uncertain by at least an order of magnitude. Mixed two-component models with lanthanide-rich ejecta are particularly sensitive to geometric distribution. A subset of mixed models shows very strong viewing angle dependence due to lanthanide curtaining, which persists even if the relative mass of lanthanide-rich component is small. The angular dependence is weak in the rest of our models, but different geometric combinations of the two components lead to a highly diverse set of light curves. We identify geometry-dependent {P Cygni} features in late spectra that directly map out strong lines in the simulated opacity of neodymium, which can help to constrain the ejecta geometry and to directly probe the r-process abundances.
Planets form in the disks around young stars. Their formation efficiency and composition are intimately linked to the protoplanetary disk locations of snow lines of abundant volatiles. We present chemical imaging of the CO snow line in the disk aroun d TW Hya, an analog of the solar nebula, using high spatial and spectral resolution Atacama Large Millimeter/Submillimeter Array (ALMA) observations of N2H+, a reactive ion present in large abundance only where CO is frozen out. The N2H+ emission is distributed in a large ring, with an inner radius that matches CO snow line model predictions. The extracted CO snow line radius of ~ 30 AU helps to assess models of the formation dynamics of the Solar System, when combined with measurements of the bulk composition of planets and comets.
Molecular oxygen has been detected in the coma of comet 67P/Churyumov--Gerasimenko with a mean abundance of 3.80 $pm$ 0.85% by the ROSINA mass spectrometer on board the Rosetta spacecraft. To account for the presence of this species in comet 67P/Chur yumov--Gerasimenko, it has been shown that the radiolysis of ice grains precursors of comets is a viable mechanism in low-density environments, such as molecular clouds. Here, we investigate the alternative possibility that the icy grains present in the midplane of the protosolar nebula were irradiated during their vertical transport between the midplane and the upper layers over a large number of cycles, as a result of turbulent mixing. Consequently, these grains spent a non-negligible fraction of their lifetime in the disks upper regions, where the irradiation by cosmic rays was strong. To do so, we used a coupled disk-transport-irradiation model to calculate the time evolution of the molecular oxygen abundance radiolytically produced in ice grains. Our computations show that, even if a significant fraction of the icy particles have followed a back and forth cycle towards the upper layers of the disk over 10 million of years, a timespan far exceeding the formation timescale of comet 67P/Churyumov--Gerasimenko, the amount of produced molecular oxygen is at least two orders of magnitude lower than the Rosetta observations. We conclude that the most likely scenario remains the formation of molecular oxygen in low-density environments, such as the presolar cloud, prior to the genesis of the protosolar nebula.
We develop a simple model to predict the radial distribution of planetesimal formation. The model is based on the observed growth of dust to mm-sized particles, which drift radially, pile-up, and form planetesimals where the stopping time and dust-to -gas ratio intersect the allowed region for streaming instability-induced gravitational collapse. Using an approximate analytic treatment, we first show that drifting particles define a track in metallicity--stopping time space whose only substantial dependence is on the disks angular momentum transport efficiency. Prompt planetesimal formation is feasible for high particle accretion rates (relative to the gas, $dot{M}_p / dot{M} > 3 times 10^{-2}$ for $alpha = 10^{-2}$), that could only be sustained for a limited period of time. If it is possible, it would lead to the deposition of a broad and massive belt of planetesimals with a sharp outer edge. Including turbulent diffusion and vapor condensation processes numerically, we find that a modest enhancement of solids near the snow line occurs for cm-sized particles, but that this is largely immaterial for planetesimal formation. We note that radial drift couples planetesimal formation across radii in the disk, and suggest that considerations of planetesimal formation favor a model in which the initial deposition of material for giant planet cores occurs well beyond the snow line.
The low water content of the terrestrial planets in the solar system suggests that the protoplanets formed within the water snow line. Accurate prediction of the snow line location moving with time provides a clue to constrain the formation process o f the planets. In this paper, we investigate the migration of the snow line in protoplanetary disks whose accretion is controlled by laminar magnetic fields, which have been proposed by various nonideal magnetohydrodynamic (MHD) simulations. We propose an empirical model of the disk temperature based on our nonideal MHD simulations, which show that the accretion heating is significantly less efficient than in turbulent disks, and calculate the snow line location over time. We find that the snow line in the magnetically accreting laminar disks moves inside the current Earths orbit within 1 Myr after star formation, whereas the time for the conventional turbulent disk is much longer than 1 Myr. This result suggests that either the rocky protoplanets formed in such an early phase of the disk evolution, or the protoplanets moved outward to the current orbits after they formed close to the protosun.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا