ﻻ يوجد ملخص باللغة العربية
Proponents of Complexity Science believe that the huge variety of emergent phenomena observed throughout nature, are generated by relatively few microscopic mechanisms. Skeptics however point to the lack of concrete examples in which a single mechanistic model manages to capture relevant macroscopic and microscopic properties for two or more distinct systems operating across radically different length and time scales. Here we show how a single complexity model built around cluster coalescence and fragmentation, can cross the fundamental divide between many-body quantum physics and social science. It simultaneously (i) explains a mysterious recent finding of Fratini et al. concerning quantum many-body effects in cuprate superconductors (i.e. scale of 10^{-9} - 10^{-4} meters and 10^{-12} - 10^{-6} seconds), (ii) explains the apparent universality of the casualty distributions in distinct human insurgencies and terrorism (i.e. scale of 10^3 - 10^6 meters and 10^4 - 10^8 seconds), (iii) shows consistency with various established empirical facts for financial markets, neurons and human gangs and (iv) makes microscopic sense for each application. Our findings also suggest that a potentially productive shift can be made in Complexity research toward the identification of equivalent many-body dynamics in both classical and quantum regimes.
Quantum many-body systems exhibit a rich and diverse range of exotic behaviours, owing to their underlying non-classical structure. These systems present a deep structure beyond those that can be captured by measures of correlation and entanglement a
Dynamical quantum phase transitions (DQPTs) extend the concept of phase transitions and thus universality to the non-equilibrium regime. In this letter, we investigate DQPTs in a string of ions simulating interacting transverse-field Ising models. We
We demonstrate that arbitrary time evolutions of many-body quantum systems can be reversed even in cases when only part of the Hamiltonian can be controlled. The reversed dynamics obtained via optimal control --contrary to standard time-reversal proc
In this letter, we study the PXP Hamiltonian with an external magnetic field that exhibits both quantum scar states and quantum criticality. It is known that this model hosts a series of quantum many-body scar states violating quantum thermalization
The collective and quantum behavior of many-body systems may be harnessed to achieve fast charging of energy storage devices, which have been recently dubbed quantum batteries. In this paper, we present an extensive numerical analysis of energy flow