ﻻ يوجد ملخص باللغة العربية
Using the zero-phonon line (ZPL) emission of a single molecule, we realized a triggered source of near-infra-red (lambda=785 nm) single photons at a high repetition rate. A Weierstrass solid immersion lens is used to image single molecules with an optical resolution of 300 nm (~0.4*lambda) and a high collection efficiency. Because dephasing of the transition dipole due to phonons vanishes at liquid helium temperatures, our source is attractive for the efficient generation of single indistinguishable photons.
By using the zero-phonon line emission of an individual organic molecule, we realized a source of indistinguishable single photons in the near infrared. A Hong-Ou-Mandel interference experiment is performed and a two-photon coalescence probability of
We demonstrate and evaluate an on-demand source of single itinerant microwave photons. Photons are generated using a highly coherent, fixed-frequency qubit-cavity system, and a protocol where the microwave control field is far detuned from the photon
By pulsed s-shell resonant excitation of a single quantum dot-micropillar system, we generate long streams of a thousand of near transform-limited single photons with high mutual indistinguishability. Hong-Ou-Mandel interference of two photons are me
We create independent, synchronized single-photon sources with built-in quantum memory based on two remote cold atomic ensembles. The synchronized single photons are used to demonstrate efficient generation of entanglement. The resulting entangled ph
Single photons are an important prerequisite for a broad spectrum of quantum optical applications. We experimentally demonstrate a heralded single-photon source based on spontaneous parametric down-conversion in collinear bulk optics, and fiber-coupl