ترغب بنشر مسار تعليمي؟ اضغط هنا

Minimal model of financial stylized facts

136   0   0.0 ( 0 )
 نشر من قبل Giacomo Bormetti
 تاريخ النشر 2010
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we afford the statistical characterization of a linear Stochastic Volatility Model featuring Inverse Gamma stationary distribution for the instantaneous volatility. We detail the derivation of the moments of the return distribution, revealing the role of the Inverse Gamma law in the emergence of fat tails, and of the relevant correlation functions. We also propose a systematic methodology for estimating the parameters, and we describe the empirical analysis of the Standard & Poor 500 index daily returns, confirming the ability of the model to capture many of the established stylized fact as well as the scaling properties of empirical distributions over different time horizons.



قيم البحث

اقرأ أيضاً

We introduce a minimal Agent Based Model for financial markets to understand the nature and Self-Organization of the Stylized Facts. The model is minimal in the sense that we try to identify the essential ingredients to reproduce the main most import ant deviations of price time series from a Random Walk behavior. We focus on four essential ingredients: fundamentalist agents which tend to stabilize the market; chartist agents which induce destabilization; analysis of price behavior for the two strategies; herding behavior which governs the possibility of changing strategy. Bubbles and crashes correspond to situations dominated by chartists, while fundamentalists provide a long time stability (on average). The Stylized Facts are shown to correspond to an intermittent behavior which occurs only for a finite value of the number of agents N. Therefore they correspond to finite size effect which, however, can occur at different time scales. We propose a new mechanism for the Self-Organization of this state which is linked to the existence of a threshold for the agents to be active or not active. The feedback between price fluctuations and number of active agents represent a crucial element for this state of Self-Organized-Intermittency. The model can be easily generalized to consider more realistic variants.
We introduce a minimal Agent Based Model with two classes of agents, fundamentalists (stabilizing) and chartists (destabilizing) and we focus on the essential features which can generate the stylized facts. This leads to a detailed understanding of t he origin of fat tails and volatility clustering and we propose a mechanism for the self-organization of the market dynamics in the quasi-critical state. The stylized facts are shown to correspond to finite size effects which, however, can be active at different time scales. This implies that universality cannot be expected in describing these properties in terms of effective critical exponents. The introduction of a threshold in the agents action (small price fluctuations lead to no-action) triggers the self-organization towards the quasi-critical state. Non-stationarity in the number of active agents and in their action plays a fundamental role. The model can be easily generalized to more realistic variants in a systematic way.
In recent years a new type of tradable assets appeared, generically known as cryptocurrencies. Among them, the most widespread is Bitcoin. Given its novelty, this paper investigates some statistical properties of the Bitcoin market. This study compar es Bitcoin and standard currencies dynamics and focuses on the analysis of returns at different time scales. We test the presence of long memory in return time series from 2011 to 2017, using transaction data from one Bitcoin platform. We compute the Hurst exponent by means of the Detrended Fluctuation Analysis method, using a sliding window in order to measure long range dependence. We detect that Hurst exponents changes significantly during the first years of existence of Bitcoin, tending to stabilize in recent times. Additionally, multiscale analysis shows a similar behavior of the Hurst exponent, implying a self-similar process.
In this work we essentially reinterpreted the Sieczka-Ho{l}yst (SH) model to make it more suited for description of real markets. For instance, this reinterpretation made it possible to consider agents as crafty. These agents encourage their neighbor s to buy some stocks if agents have an opportunity to sell these stocks. Also, agents encourage them to sell some stocks if agents have an opposite opportunity. Furthermore, in our interpretation price changes respond only to the agents opinions change. This kind of respond protects the stock market dynamics against the paradox (present in the SH model), where all agents e.g. buy stocks while the corresponding prices remain unchanged. In this work we found circumstances, where distributions of returns (obtained for quite different time scales) either obey power-law or have at least fat tails. We obtained these distributions from numerical simulations performed in the frame of our approach.
75 - Zhi-Qiang Jiang 2018
Multifractality is ubiquitously observed in complex natural and socioeconomic systems. Multifractal analysis provides powerful tools to understand the complex nonlinear nature of time series in diverse fields. Inspired by its striking analogy with hy drodynamic turbulence, from which the idea of multifractality originated, multifractal analysis of financial markets has bloomed, forming one of the main directions of econophysics. We review the multifractal analysis methods and multifractal models adopted in or invented for financial time series and their subtle properties, which are applicable to time series in other disciplines. We survey the cumulating evidence for the presence of multifractality in financial time series in different markets and at different time periods and discuss the sources of multifractality. The usefulness of multifractal analysis in quantifying market inefficiency, in supporting risk management and in developing other applications is presented. We finally discuss open problems and further directions of multifractal analysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا