ترغب بنشر مسار تعليمي؟ اضغط هنا

RXTE and XMM observations of intermediate polar candidates

140   0   0.0 ( 0 )
 نشر من قبل Oliver Butters Dr
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Aims. To determine the credentials of nine candidate intermediate polars in order to confirm whether or not they are magnetic cataclysmic variables. Methods. Frequency analysis of RXTE and XMM data was used to search for temporal variations which could be associated with the spin period of the magnetic white dwarf. X-ray spectral analysis was carried out to characterise the emission and absorption properties of each target. Results. The hard X-ray light curve of V2069 Cyg shows a pulse period of 743.2 s, and its spectrum is fit by an absorbed bremsstrahlung model with an iron line, confirming this to be a genuine intermediate polar. The hard X-ray light curve of the previously confirmed intermediate polar IGR J00234+6141 is shown to be consistent with the previous low energy X-ray detection of a 563.5 s pulse period. The likely polar IGR J14536-5522 shows no coherent modulation at the previously identified period of 3.1 hr, but does exhibit a clear signal at periods likely to be harmonically related to it. Whilst our RXTE observations of RX J0153.3+7447, Swift J061223.0+701243.9, V436 Car and DD Cir are largely too faint to give any definitive results, the observation of IGR J16167-4957 and V2487 Oph show some characteristics of intermediate polars and these objects remain good candidates. Conclusions. We confirmed one new hard X-ray selected intermediate polar from our sample, V2069 Cyg.



قيم البحث

اقرأ أيضاً

We present photometry of the intermediate polar FO Aquarii obtained as part of the K2 mission using the Kepler space telescope. The amplitude spectrum of the data confirms the orbital period of 4.8508(4) h, and the shape of the light curve is consist ent with the outer edge of the accretion disk being eclipsed when folded on this period. The average flux of FO Aquarii changed during the observations, suggesting a change in the mass accretion rate. There is no evidence in the amplitude spectrum of a longer period that would suggest disk precession. The amplitude spectrum also shows the white dwarf spin period of 1254.3401(4) s, the beat period of 1351.329(2) s, and 31 other spin and orbital harmonics. The detected period is longer than the last reported period of 1254.284(16) s, suggesting that FO Aqr is now spinning down, and has a positive $dot{P}$. There is no detectable variation in the spin period over the course of the K2 observations, but the phase of the spin cycle is correlated with the system brightness. We also find the amplitude of the beat signal is correlated with the system brightness.
Context. On the basis of XMM-Newton observations, we investigate the energy balance of selected magnetic cataclysmic variables, which have shown an extreme soft-to-hard X-ray flux ratio in the ROSAT All-Sky Survey. Aims. We intend to establish the X-ray properties of the system components, their flux contributions, and the accretion geometry of the X-ray soft polar QS Tel. In the context of high-resolution X-ray analyses of magnetic cataclysmic variables, this study will contribute to better understanding the accretion processes on magnetic white dwarfs. Methods. During an intermediate high state of accretion of QS Tel, we have obtained 20 ks of XMM-Newton data, corresponding to more than two orbital periods, accompanied by simultaneous optical photometry and phase-resolved spectroscopy. We analyze the multi-wavelength spectra and light curves and compare them to former high- and low-state observations. Results. Soft emission at energies below 2 keV dominates the X-ray light curves. The complex double-peaked maxima are disrupted by a sharp dip in the very soft energy range (0.1-0.5 keV), where the count rate abruptly drops to zero. The EPIC spectra are described by a minimally absorbed black body at 20 eV and two partially absorbed MEKAL plasma models with temperatures around 0.2 and 3 keV. The black-body-like component arises from one mainly active, soft X-ray bright accretion region nearly facing the mass donor. Parts of the plasma emission might be attributed to the second, virtually inactive pole. High soft-to-hard X-ray flux ratios and hardness ratios demonstrate that the high-energy emission of QS Tel is substantially dominated by its X-ray soft component.
Aims. We intend to establish the X-ray properties of Swift J0732.5-1331 and therefore confirm its status as an intermediate polar. Method. We analysed 36,240 s of X-ray data from RXTE. Frequency analysis was used to constrain temporal variations and spectral analysis used to characterise the emission and absorption properties. Results. The X-ray spin period is confirmed to be 512.4(3) s with a strong first harmonic. No modulation is detected at the candidate orbital period of 5.6 h, but a coherent modulation is present at the candidate 11.3 h period. The spectrum is consistent with a 37 keV bremsstrahlung continuum with an iron line at 6.4 keV absorbed by an equivalent hydrogen column density of around 10^22 atoms cm^-2. Conclusions. Swift J0732-1331 is confirmed to be an intermediate polar.
We present the discovery of a magnetic field on the white dwarf component in the detached post common envelope binary (PCEB) CC Cet. Magnetic white dwarfs in detached PCEBs are extremely rare, in contrast to the high incidence of magnetism in single white dwarfs and cataclysmic variables. We find Zeeman-split absorption lines in both ultraviolet Hubble Space Telescope (HST) spectra and archival optical spectra of CC Cet. Model fits to the lines return a mean magnetic field strength of approximately 600-700 kG. Differences in the best-fit magnetic field strength between two separate HST observations and the high v sin i of the lines indicate that the white dwarf is rotating with a period ~0.5 hours, and that the magnetic field is not axisymmetric about the spin axis. The magnetic field strength and rotation period are consistent with those observed among the intermediate polar class of cataclysmic variable, and we compute stellar evolution models that predict CC Cet will evolve into an intermediate polar in 7-17 Gyr. Among the small number of known PCEBs containing a confirmed magnetic white dwarf, CC Cet is the hottest (and thus youngest), with the weakest field strength, and cannot have formed via the recently proposed crystallisation/spin-up scenario. In addition to the magnetic field measurements, we update the atmospheric parameters of the CC Cet white dwarf via model spectra fits to the HST data and provide a refined orbital period and ephemeris from TESS photometry.
We present high speed optical, spectroscopic and Swift X-ray observations made during the dwarf nova superoutburst of CC Scl in November 2011. An orbital period of 1.383 h and superhump period of 1.443 h were measured, but the principal new finding i s that CC Scl is a previously unrecognised intermediate polar, with a white dwarf spin period of 389.49 s which is seen in both optical and Swift X-ray light curves only during the outburst. In this it closely resembles the old nova GK Per, but unlike the latter has one of the shortest orbital periods among intermediate polars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا