ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatial scalar correlator in strongly coupled hot N=4 Yang-Mills theory

258   0   0.0 ( 0 )
 نشر من قبل Keijo Kajantie
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We use AdS/CFT duality to compute in N=4 Yang-Mills theory the finite temperature spatial correlator G(r) of the scalar operator F^2, integrated over imaginary time. The computation is carried out both at zero frequency and integrating the spectral function over frequencies. The result is compared with a perturbative computation in finite T SU(N_c) Yang-Mills theory.



قيم البحث

اقرأ أيضاً

We use AdS/QCD duality to compute the finite temperature Greens function G(omega,k;T) of the shear operator T_12 for all omega,k in hot Yang-Mills theory. The goal is to assess how the existence of scales like the transition temperature and glueball masses affects the correlator computed in the scalefree conformal N=4 supersymmetric Yang-Mills theory. We observe sizeable effects for T close to T_c which rapidly disappear with increasing T. Quantitative agreement of these predictions with future lattice Monte Carlo data would suggest that QCD matter in this temperature range is strongly interacting.
We study event shapes in N=4 SYM describing the angular distribution of energy and R-charge in the final states created by the simplest half-BPS scalar operator. Applying the approach developed in the companion paper arXiv:1309.0769, we compute these observables using the correlation functions of certain components of the N=4 stress-tensor supermultiplet: the half-BPS operator itself, the R-symmetry current and the stress tensor. We present master formulas for the all-order event shapes as convolutions of the Mellin amplitude defining the correlation function of the half-BPS operators, with a coupling-independent kernel determined by the choice of the observable. We find remarkably simple relations between various event shapes following from N=4 superconformal symmetry. We perform thorough checks at leading order in the weak coupling expansion and show perfect agreement with the conventional calculations based on amplitude techniques. We extend our results to strong coupling using the correlation function of half-BPS operators obtained from the AdS/CFT correspondence.
We argue that the scattering amplitudes in the maximally supersymmetric N=4 super-Yang-Mills theory possess a new symmetry which extends the previously discovered dual conformal symmetry. To reveal this property we formulate the scattering amplitudes as functions in the appropriate dual superspace. Rewritten in this form, all tree-level MHV and next-to-MHV amplitudes exhibit manifest dual superconformal symmetry. We propose a new, compact and Lorentz covariant formula for the tree-level NMHV amplitudes for arbitrary numbers and types of external particles. The dual conformal symmetry is broken at loop level by infrared divergences. However, we provide evidence that the anomalous contribution to the MHV and NMHV superamplitudes is the same and, therefore, their ratio is a dual conformal invariant function. We identify this function by an explicit calculation of the six-particle amplitudes at one loop. We conjecture that these properties hold for all, MHV and non-MHV, superamplitudes in N=4 SYM both at weak and at strong coupling.
We study singular time-dependent $frac{1}{8}$-BPS configurations in the abelian sector of ${{mathcal N}= 4}$ supersymmetric Yang-Mills theory that represent BPS string-like defects in ${{mathbb R}times S^3}$ spacetime. Such BPS strings can be describ ed as intersections of the zeros of holomorphic functions in two complex variables with a 3-sphere. We argue that these BPS strings map to $frac{1}{8}$-BPS surface operators under the state-operator correspondence of the CFT. We show that the string defects are holographically dual to noncompact probe D3-branes in global $AdS_5times S^5$ that share supersymmetries with a class of dual-giant gravitons. For simple configurations, we demonstrate how to define a good variational problem and propose a regularization scheme that leads to finite energy and global charges on both sides of the holographic correspondence.
85 - Shota Komatsu 2017
This is a pedagogical review on the integrability-based approach to the three-point function in N=4 supersymmetric Yang-Mills theory. We first discuss the computation of the structure constant at weak coupling and show that the result can be recast a s a sum over partitions of the rapidities of the magnons. We then introduce a non-perturbative framework, called the hexagon approach, and explain how one can use the symmetries (i.e. superconformal and gauge symmetries) and integrability to determine the structure constants. This article is based on the lectures given in Les Houches Summer School Integrability: From statistical systems to gauge theory in June 2016.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا