ترغب بنشر مسار تعليمي؟ اضغط هنا

Electric-field Manipulation of the Lande g Tensor of Holes in In0.5Ga0.5As/GaAs Self-assembled Quantum Dots

160   0   0.0 ( 0 )
 نشر من قبل Michael E. Flatt\\'e
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The effect of an electric field on spin precession in In0.5Ga0.5As/GaAs self-assembled quantum dots is calculated using multiband real-space envelope-function theory. The dependence of the Lande g tensor on electric fields should permit high-frequency g tensor modulation resonance, as well as direct, nonresonant electric-field control of the hole spin. Subharmonic resonances have also been found in g tensor modulation resonance of the holes, due to the strong quadratic dependence of components of the hole g tensor on the electric field.



قيم البحث

اقرأ أيضاً

The knowledge of electron and hole g-factors, their control and engineering are key for the usage of the spin degree of freedom for information processing in solid state systems. The electronic g-factor will be materials dependent, the effect being l arger for materials with large spin-orbit coupling. Since electrons can be individually trapped into quantum dots in a controllable manner, they may represent a good platform for the implementation of quantum information processing devices. Here we use self-assembled quantum dots of InAs embedded in GaAs for the g-factor control and engineering.
We evaluate the Lande g factor of electrons in quantum dots (QDs) fabricated from GaAs quantum well (QW) structures of different well width. We first determine the Lande electron g factor of the QWs through resistive detection of electron spin resona nce and compare it to the enhanced electron g factor determined from analysis of the magneto-transport. Next, we form laterally defined quantum dots using these quantum wells and extract the electron g factor from analysis of the cotunneling and Kondo effect within the quantum dots. We conclude that the Lande electron g factor of the quantum dot is primarily governed by the electron g factor of the quantum well suggesting that well width is an ideal design parameter for g-factor engineering QDs.
220 - T. Kuroda , M. Abbarchi , T. Mano 2008
We report on photon coincidence measurement in a single GaAs self-assembled quantum dot (QD) using a pulsed excitation light source. At low excitation, when a neutral exciton line was present in the photoluminescence (PL) spectrum, we observed nearly perfect single photon emission from an isolated QD at 670 nm wavelength. For higher excitation, multiple PL lines appeared on the spectra, reflecting the formation of exciton complexes. Cross-correlation functions between these lines showed either bunching or antibunching behavior, depending on whether the relevant emission was from a biexciton cascade or a charged exciton recombination.
We investigate the electronic structure of the InAs/InP quantum dots using an atomistic pseudopotential method and compare them to those of the InAs/GaAs QDs. We show that even though the InAs/InP and InAs/GaAs dots have the same dot material, their electronic structure differ significantly in certain aspects, especially for holes: (i) The hole levels have a much larger energy spacing in the InAs/InP dots than in the InAs/GaAs dots of corresponding size. (ii) Furthermore, in contrast with the InAs/GaAs dots, where the sizeable hole $p$, $d$ intra-shell level splitting smashes the energy level shell structure, the InAs/InP QDs have a well defined energy level shell structure with small $p$, $d$ level splitting, for holes. (iii) The fundamental exciton energies of the InAs/InP dots are calculated to be around 0.8 eV ($sim$ 1.55 $mu$m), about 200 meV lower than those of typical InAs/GaAs QDs, mainly due to the smaller lattice mismatch in the InAs/InP dots. (iii) The widths of the exciton $P$ shell and $D$ shell are much narrower in the InAs/InP dots than in the InAs/GaAs dots. (iv) The InAs/GaAs and InAs/InP dots have a reversed light polarization anisotropy along the [100] and [1$bar{1}$0] directions.
We studied the formation mechanism of the in-plane nuclear field in single self-assembled In$_{0.75}$Al$_{0.25}$As/Al$_{0.3}$Ga$_{0.7}$As quantum dots. The Hanle curves with an anomalously large width and hysteretic behavior at the critical transvers e magnetic field were observed in many single quantum dots grown in the same QD sample. In order to explain the anomalies in the Hanle curve indicating the formation of a large nuclear field perpendicular to the photo-injected electron spin polarization, we propose a new model based on the current phenomenological model for dynamic nuclear spin polarization. The model includes the effects of the nuclear quadrupole interaction and the sign inversion between in-plane and out-of-plane g-factors, and the model calculations reproduce successfully the characteristics of the observed anomalies in the Hanle curves.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا