ﻻ يوجد ملخص باللغة العربية
A topological group $G$ is called an $M_omega$-group if it admits a countable cover $K$ by closed metrizable subspaces of $G$ such that a subset $U$ of $G$ is open in $G$ if and only if $Ucap K$ is open in $K$ for every $KinK$. It is shown that any two non-metrizable uncountable separable zero-dimenisional $M_omega$-groups are homeomorphic. Together with Zelenyuks classification of countable $k_omega$-groups this implies that the topology of a non-metrizable zero-dimensional $M_omega$-group $G$ is completely determined by its density and the compact scatteredness rank $r(G)$ which, by definition, is equal to the least upper bound of scatteredness indices of scattered compact subspaces of $G$.
We discuss various modifications of separability, precompactnmess and narrowness in topological groups and test those modifications in the permutation groups $S(X)$ and $S_{<omega}(X)$.
An embeddability criterion for zero-dimensional metrizable topological spaces in zero-dimensional metrizable topological groups is given. A space which can be embedded as a closed subspace in a zero-dimensional metrizable group but is not strongly ze
Topological gyrogroups, with a weaker algebraic structure without associative law, have been investigated recently. We prove that each $T_{0}$-strongly topological gyrogroup is completely regular. We also prove that every $T_{0}$-strongly topological
A topological group $X$ is called $duoseparable$ if there exists a countable set $Ssubseteq X$ such that $SUS=X$ for any neighborhood $Usubseteq X$ of the unit. We construct a functor $F$ assigning to each (abelian) topological group $X$ a duoseparab
The structure of topological spaces is analysed here through the lenses of fibrous preorders. Each topological space has an associated fibrous preorder and those fibrous preorders which return a topological space are called spacial. A special class o