ﻻ يوجد ملخص باللغة العربية
We report the observation of inverse-magnetic-field-periodic, radiation-induced magnetoresistance oscillations in GaAs/AlGaAs heterostructures prepared in W. Wegscheiders group, compare their characteristics with similar oscillations in V. Umanskys material, and describe the lineshape variation vs. the radiation power, $P$, in the two systems. We find that the radiation-induced oscillatory $Delta R_{xx}$, in both materials, can be described by $Delta R_{xx} = -A exp(-lambda/B)sin(2 pi F/B)$, where $A$ is the amplitude, $lambda$ is the damping parameter, and $F$ is the oscillation frequency. Both $lambda$ and $F$ turn out to be insensitive to $P$. On the other hand, $A$ grows nonlinearly with $P$.
We report on observation of pronounced terahertz radiation-induced magneto-resistivity oscillations in AlGaAs/GaAs two-dimensional electron systems, the THz analog of the microwave induced resistivity oscillations (MIRO). Applying high power radiatio
We report on the observation of terahertz radiation induced photoconductivity and of terahertz analog of the microwave-induced resistance oscillations (MIRO) in HgTe-based quantum well (QW) structures of different width. The MIRO-like effect has been
Recently discovered new structures and zero-resistance states outside the well-known oscillations are demonstrated to arise from multiphoton assisted processes, by a detailed analysis of microwave photoresistance in two-dimensional electron systems u
We develop a systematic theory of microwave-induced oscillations in magnetoresistivity of a 2D electron gas in the vicinity of fractional harmonics of the cyclotron resonance, observed in recent experiments. We show that in the limit of well-separate
We develop a systematic theory of microwave-induced oscillations in magnetoresistivity of a 2D electron gas in the vicinity of fractional harmonics of the cyclotron resonance, observed in recent experiments. We show that in the limit of well-separate