ﻻ يوجد ملخص باللغة العربية
We present photometry of the giant extrasolar planet WASP-4b at 3.6 and 4.5 micron taken with the Infrared Array Camera on board the Spitzer Space Telescope as part of Spitzers extended warm mission. We find secondary eclipse depths of 0.319+/-0.031% and 0.343+/-0.027% for the 3.6 and 4.5 micron bands, respectively and show model emission spectra and pressure-temperature profiles for the planetary atmosphere. These eclipse depths are well fit by model emission spectra with water and other molecules in absorption, similar to those used for TrES-3 and HD 189733b. Depending on our choice of model, these results indicate that this planet has either a weak dayside temperature inversion or no inversion at all. The absence of a strong thermal inversion on this highly irradiated planet is contrary to the idea that highly irradiated planets are expected to have
We present photometry of the extrasolar planet WASP-5b in the 3.6 and 4.5 micron bands taken with the Spitzer Space Telescopes Infrared Array Camera as part of the extended warm mission. By examining the depth of the planets secondary eclipse at thes
The transiting exoplanet WASP-18b was discovered in 2008 by the Wide Angle Search for Planets (WASP) project. The Spitzer Exoplanet Target of Opportunity Program observed secondary eclipses of WASP-18b using Spitzers Infrared Array Camera (IRAC) in t
We report the results of infrared (8 micron) transit and secondary eclipse photometry of the hot Neptune exoplanet, GJ436b using Spitzer. The nearly photon-limited precision of these data allow us to measure an improved radius for the planet, and to
We present Warm Spitzer/IRAC secondary eclipse time series photometry of three short-period transiting exoplanets, HAT-P-3b, HAT-P-4b and HAT-P-12b, in both the available 3.6 and 4.5 micron bands. HAT-P-3b and HAT-P-4b are Jupiter-mass, objects orbit
The transiting planet CoRoT-1b is thought to belong to the pM-class of planets, in which the thermal emission dominates in the optical wavelengths. We present a detection of its secondary eclipse in the CoRoT white channel data, whose response functi