ترغب بنشر مسار تعليمي؟ اضغط هنا

Tunneling anisotropic magnetoresistance of NiFe/IrMn/MgO/Pt stack: An antiferromagnet based spin-valve

156   0   0.0 ( 0 )
 نشر من قبل Tomas Jungwirth
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spin-valve is a microelectronic device in which high and low resistance states are realized by utilizing both charge and spin of carriers. Spin-valve structures used in modern hard drive read-heads and magnetic random access memories comprise two ferromagnetic (FM) electrodes whose relative magnetization orientations can be switched between parallel and antiparallel configurations, yielding the desired giant or tunneling magnetoresistance effect. In this paper we demonstrate >100$% spin-valve-like signal in a NiFe/IrMn/MgO/Pt stack with an antiferromagnet (AFM) on one side and a non-magnetic metal on the other side of the tunnel barrier. FM moments in NiFe are reversed by external fields <50mT and the exchange-spring effect of NiFe on IrMn induces rotation of AFM moments in IrMn which is detected by the measured tunneling anisotropic magnetoresistance (TAMR). Our work demonstrates a spintronic element whose transport characteristics are governed by an AFM. It demonstrates that sensitivity to low magnetic fields can be combined with large, spin-orbit coupling induced magneto-transport anisotropy using a single magnetic electrode. The AFM-TAMR provides means to study magnetic characteristics of AFM films by an electronic transport measurement.



قيم البحث

اقرأ أيضاً

We report observations of tunneling anisotropic magnetoresitance (TAMR) in vertical tunnel devices with a ferromagnetic multilayer-(Co/Pt) electrode and a non-magnetic Pt counter-electrode separated by an AlOx barrier. In stacks with the ferromagneti c electrode terminated by a Co film the TAMR magnitude saturates at 0.15% beyond which it shows only weak dependence on the magnetic field strength, bias voltage, and temperature. For ferromagnetic electrodes terminated by two monolayers of Pt we observe order(s) of magnitude enhancement of the TAMR and a strong dependence on field, temperature and bias. Discussion of experiments is based on relativistic ab initio calculations of magnetization orientation dependent densities of states of Co and Co/Pt model systems.
We conducted a systematic angular dependence study of nonlinear magnetoresistance in NiFe/Pt bilayers at variable temperature and field using the Wheatstone bridge method. We successfully disentangled magnon magnetoresistance from other types of magn etoresistances based on their different temperature and field dependences. Both the spin Hall/anisotropic and magnon magnetoresistances contain sine phi and sine 3 phi components with phi the angle between current and magnetization, but they exhibit different field and temperature dependence. The competition between different types of magnetoresistances leads to a sign reversal of sine 3 phi component at a specific magnetic field, which was not reported previously. The phenomenological model developed is able to account for the experimental results for both NiFe/Pt and NiFe/Ta samples with different layer thicknesses. Our results demonstrate the importance of disentangling different types of magnetoresistances when characterizing the charge-spin interconversion process in magnetic heterostructures.
We introduce a new class of spintronics devices in which a spin-valve like effect results from strong spin-orbit coupling in a single ferromagnetic layer rather than from injection and detection of a spin-polarized current by two coupled ferromagnets . The effect is observed in a normal-metal/insulator/ferromagnetic-semiconductor tunneling device. This behavior is caused by the interplay of the anisotropic density of states in (Ga,Mn)As with respect to the magnetization direction, and the two-step magnetization reversal process in this material.
Antiferromagnetic spintronics actively introduces new principles of magnetic memory, in which the most fundamental spin-dependent phenomena, i.e. anisotropic magnetoresistance effects, are governed by an antiferromagnet instead of a ferromagnet. A ge neral scenario of the antiferromagnetic anisotropic magnetoresistance effects mainly stems from the magnetocrystalline anisotropy related to spin-orbit coupling. Here we demonstrate magnetic field driven contour rotation of the fourfold anisotropic magnetoresistance in bare antiferromagnetic Sr2IrO4/SrTiO3 (001) thin films hosting a strong spin-orbit coupling induced Jeff=1/2 Mott state. Concurrently, an intriguing minimal in the magnetoresistance emerges. Through first principles calculations, the band-gap engineering due to rotation of the Ir isospins is revealed to be responsible for these emergent phenomena, different from the traditional scenario where relatively more conductive state was obtained usually when magnetic field was applied along the magnetic easy axis. Our findings demonstrate a new efficient route, i.e. via the novel Jeff=1/2 state, to realize controllable anisotropic magnetoresistance in antiferromagnetic materials.
102 - W. Zhou , T. Seki , T. Kubota 2018
We present the Co-Gd composition dependence of the spin-Hall magnetoresistance (SMR) and anisotropic magnetoresistance (AMR) for ferrimagnetic Co100-xGdx / Pt bilayers. With Gd concentration x, its magnetic moment increasingly competes with the Co mo ment in the net magnetization. We find a nearly compensated ferrimagnetic state at x = 24. The AMR changes sign from positive to negative with increasing x, vanishing near the magnetization compensation. On the other hand, the SMR does not vary significantly even where the AMR vanishes. These experimental results indicate that very different scattering mechanisms are responsible for AMR and SMR. We discuss a possible origin for the alloy composition dependence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا