ﻻ يوجد ملخص باللغة العربية
In this paper we study the form factors for the half-BPS operators $mathcal{O}^{(n)}_I$ and the $mathcal{N}=4$ stress tensor supermultiplet current $W^{AB}$ up to the second order of perturbation theory and for the Konishi operator $mathcal{K}$ at first order of perturbation theory in $mathcal{N}=4$ SYM theory at weak coupling. For all the objects we observe the exponentiation of the IR divergences with two anomalous dimensions: the cusp anomalous dimension and the collinear anomalous dimension. For the IR finite parts we obtain a similar situation as for the gluon scattering amplitudes, namely, apart from the case of $W^{AB}$ and $mathcal{K}$ the finite part has some remainder function which we calculate up to the second order. It involves the generalized Goncharov polylogarithms of several variables. All the answers are expressed through the integrals related to the dual conformal invariant ones which might be a signal of integrable structure standing behind the form factors.
We construct the most general composite operators of N = 4 SYM in Lorentz harmonic chiral ($approx$ twistor) superspace. The operators are built from the SYM supercurvature which is nonpolynomial in the chiral gauge prepotentials. We reconstruct the
Soft theorems for the form factors of 1/2-BPS and Konishi operator supermultiplets are derived at tree level in N=4 SYM theory. They have a form identical to the one in the amplitude case. For MHV sectors of stress tensor and Konishi supermultiplets
In this paper we develop a supersymmetric version of unitarity cut method for form factors of operators from the chiral truncation of the the $mathcal{N}=4$ stress-tensor current supermultiplet $T^{AB}$. The relation between the superform factor with
We consider tree level form factors of operators from stress tensor operator supermultiplet with light-like operator momentum $q^2=0$. We present a conjecture for the Grassmannian integral representation both for these tree level form factors as well
We propose a mechanism for calculating anomalous dimensions of higher-spin twist-two operators in N=4 SYM. We consider the ratio of the two-point functions of the operators and of their superconformal descendants or, alternatively, of the three-point