ﻻ يوجد ملخص باللغة العربية
The measurement of nuclear Generalized Parton Distributions (GPDs) represents a valuable tool to understand the structure of bound nucleons and the phenomenology of hard scattering off nuclei. By using a realistic, non-relativistic microscopic approach for the evaluation of GPDs of 3He, it will be shown that conventional nuclear effects, such as isospin and binding ones, or the uncertainty related to the use of a given nucleon-nucleon potential, are bigger than in the forward case so that, if great attention is not paid, conventional nuclear effects can be easily mistaken for exotic ones. It is stressed that 3He, for which the best realistic calculations are possible, represents a unique target to discriminate between conventional and exotic effects. The complementary information which could be obtained by using a 3H target, the possible extraction of the neutron information, as well as the relevance of a relativistic treatment, will be also addressed.
Two promising directions beyond inclusive deep inelastic scattering experiments, aimed at unveiling the three dimensional structure of the bound nucleon, are reviewed, considering in particular the $^3$He nucleus. The 3D structure in coordinate space
The generalized parton distribution H and E of the 3He nucleus, which could be measured in hard exclusive processes, such as coherent deeply virtual Compton scattering, are thoroughly analyzed in impulse approximation, within the Av18 interaction. It
An impulse approximation analysis is described of the generalized parton distributions (GPDs) H and E of the 3He nucleus, quantities which are accessible in hard exclusive processes, such as coherent deeply virtual Compton scattering (DVCS). The calc
The measurement of nuclear Generalized Parton Distributions (GPDs) will represent a valuable tool to understand the structure of bound nucleons in the nuclear medium, as well as the role of non-nucleonic degrees of freedom in the phenomenology of har
We derive one-loop matching relations for the Ioffe-time distributions related to the pion distribution amplitude (DA) and generalized parton distributions (GPDs). They are obtained from a universal expression for the one-loop correction in an operat