ﻻ يوجد ملخص باللغة العربية
We consider the discrete-time threshold-$theta ge 2$ contact process on a random r-regular graph on n vertices. In this process, a vertex with at least theta occupied neighbors at time t will be occupied at time t+1 with probability p, and vacant otherwise. We show that if $theta ge 2$ and $r ge theta+2$, $epsilon_1$ is small and p is at least $p_1(epsilon_1)$, then starting from all vertices occupied the fraction of occupied vertices stays above $1-2epsilon_1$ up to time $exp(gamma_1(r)n)$ with probability at least $1 - exp(-gamma_1(r)n)$. In the other direction, we show that for $p_2 < 1$ there is an $epsilon_2(p_2)>0$ so that if $p le p_2$ and the number of occupied vertices in the initial configuration is at most $epsilon_2(p_2)n$, then with high probability all vertices are vacant at time $C_2(p_2) log(n)$. These two conclusions imply that on the random r-regular graph there cannot be a quasi-stationary distribution with density of occupied vertices between 0 and $epsilon_2(p_1)$, and allow us to conclude that the process on the r-tree has a first order phase transition.
The key to our investigation is an improved (and in a sense sharp) understanding of the survival time of the contact process on star graphs. Using these results, we show that for the contact process on Galton-Watson trees, when the offspring distribu
We consider the contact process on the model of hyperbolic random graph, in the regime when the degree distribution obeys a power law with exponent $chi in(1,2)$ (so that the degree distribution has finite mean and infinite second moment). We show th
We show that the contact process on the rank-one inhomogeneous random graphs and Erdos-R{e}nyi graphs with mean degree large enough survives a time exponential in the size of these graphs for any positive infection rate. In addition, a metastable result for the extinction time is also proved.
Consider a random regular graph with degree $d$ and of size $n$. Assign to each edge an i.i.d. exponential random variable with mean one. In this paper we establish a precise asymptotic expression for the maximum number of edges on the shortest-weigh
A little over 25 years ago Pemantle pioneered the study of the contact process on trees, and showed that on homogeneous trees the critical values $lambda_1$ and $lambda_2$ for global and local survival were different. He also considered trees with pe