ﻻ يوجد ملخص باللغة العربية
In this paper we describe the technology of building a vacuum-tight high voltage feedthrough which is able to operate at voltages up to 30 kV. The feedthrough has a coaxial structure with a grounded sheath which makes it capable to lead high voltage potentials into cryogenic liquids, without risk of surface discharges in the gas phase above the liquid level. The feedthrough is designed to be used in ionization detectors, based on liquefied noble gases, such as Argon or Xenon.
Cold electronics is a key technology in many areas of science and technology including space exploration programs and particle physics. A major experiment with a very large number of analog and digital electronics signal processing channels to be ope
We have demonstrated that hole-type gaseous detectors, GEMs and capillary plates, can operate up to 77 K. For example, a single capillary plate can operate at gains of above 10E3 in the entire temperature interval between 300 until 77 K. The same cap
The careful filtering of microwave electromagnetic radiation is critical for controlling the electromagnetic environment for experiments in solid-state quantum information processing and quantum metrology at millikelvin temperatures. We describe the
In some experiments and applications there is need for large-area photosensitive detectors to operate at cryogenic temperatures. Nowadays, vacuum PMs are usually used for this purpose. We have developed special designs of planar photosensitive gaseou
The results of tests of 1 vacuum phototriodes in a magnetic field up to 4.5 T are presented. It was found that output amplitude decreases by about 6 % per tesla in the magnetic field range from 2.0 to 4.0 T. For devices with an anode mesh pitch of 16