ترغب بنشر مسار تعليمي؟ اضغط هنا

Cohomology and Hodge Theory on Symplectic Manifolds: II

188   0   0.0 ( 0 )
 نشر من قبل Li-Sheng Tseng
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that the exterior derivative operator on a symplectic manifold has a natural decomposition into two linear differential operators, analogous to the Dolbeault operators in complex geometry. These operators map primitive forms into primitive forms and therefore lead directly to the construction of primitive cohomologies on symplectic manifolds. Using these operators, we introduce new primitive cohomologies that are analogous to the Dolbeault cohomology in the complex theory. Interestingly, the finiteness of these primitive cohomologies follows directly from an elliptic complex. We calculate the known primitive cohomologies on a nilmanifold and show that their dimensions can vary depending on the class of the symplectic form.



قيم البحث

اقرأ أيضاً

We introduce filtered cohomologies of differential forms on symplectic manifolds. They generalize and include the cohomologies discussed in Paper I and II as a subset. The filtered cohomologies are finite-dimensional and can be associated with differ ential elliptic complexes. Algebraically, we show that the filtered cohomologies give a two-sided resolution of Lefschetz maps, and thereby, they are directly related to the kernels and cokernels of the Lefschetz maps. We also introduce a novel, non-associative product operation on differential forms for symplectic manifolds. This product generates an A-infinity algebra structure on forms that underlies the filtered cohomologies and gives them a ring structure. As an application, we demonstrate how the ring structure of the filtered cohomologies can distinguish different symplectic four-manifolds in the context of a circle times a fibered three-manifold.
205 - Li-Sheng Tseng , Lihan Wang 2014
We study symplectic Laplacians on compact symplectic manifolds with boundary. These Laplacians are associated with symplectic cohomologies of differential forms and can be of fourth-order. We introduce several natural boundary conditions on different ial forms and use them to establish Hodge theory by proving various form decomposition and also isomorphisms between the symplectic cohomologies and the spaces of harmonic fields. These novel boundary conditions can be applied in certain cases to study relative symplectic cohomologies and Lefschetz maps between relative de Rham cohomologies. As an application, our results are used to solve boundary value problems of differential forms.
Recently, Tsai-Tseng-Yau constructed new invariants of symplectic manifolds: a sequence of Aoo-algebras built of differential forms on the symplectic manifold. We show that these symplectic Aoo-algebras have a simple topological interpretation. Namel y, when the cohomology class of the symplectic form is integral, these Aoo-algebras are equivalent to the standard de Rham differential graded algebra on certain odd-dimensional sphere bundles over the symplectic manifold. From this equivalence, we deduce for a closed symplectic manifold that Tsai-Tseng-Yaus symplectic Aoo-algebras satisfy the Calabi-Yau property, and importantly, that they can be used to define an intersection theory for coisotropic/isotropic chains. We further demonstrate that these symplectic Aoo-algebras satisfy several functorial properties and lay the groundwork for addressing Weinstein functoriality and invariance in the smooth category.
139 - Li-Sheng Tseng , Lihan Wang 2017
We introduce new boundary conditions for differential forms on symplectic manifolds with boundary. These boundary conditions, dependent on the symplectic structure, allows us to write down elliptic boundary value problems for both second-order and fo urth-order symplectic Laplacians and establish Hodge theories for the cohomologies of primitive forms on manifolds with boundary. We further use these boundary conditions to define a relative version of the primitive cohomologies and to relate primitive cohomologies with Lefschetz maps on manifolds with boundary. As we show, these cohomologies of primitive forms can distinguish certain Kahler structures of Kahler manifolds with boundary.
We analyze two different fibrations of a link complement M constructed by McMullen-Taubes, and studied further by Vidussi. These examples lead to inequivalent symplectic forms on a 4-manifold X = S x M, which can be distinguished by the dimension of the primitive cohomologies of differential forms. We provide a general algorithm for computing the monodromies of the fibrations explicitly, which are needed to determine the primitive cohomologies. We also investigate a similar phenomenon coming from fibrations of a class of graph links, whose primitive cohomology provides information about the fibration structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا