ﻻ يوجد ملخص باللغة العربية
In light of the growing interest in searching for low mass, rocky planets, we investigate the impact of starspots on radial velocity searches for earth-mass planets in orbit about M dwarf stars. Since new surveys targeting M dwarfs will likely be carried out at infrared wavelengths, a comparison between V and Y band starspot induced jitter is made, indicating a reduction of up to an order of magnitude when observing in the Y band. The exact reduction in jitter is dependent on the photosphere to spot contrast ratio, with greater improvements at smaller contrasts. We extrapolate a model used to describe solar spot distributions to simulate the spot patterns that we expect to find on M dwarfs. Under the assumption that M dwarfs are near or fully convective, we randomly place starspots on the stellar surface, simulating different levels of spot coverage. Line profiles, distorted by spots are derived and are used to investigate the starspot induced jitter. By making assumptions about the degree of spot activity, detection limits for earth-mass planets in habitable zones are simulated for between 10 and 500 observation epochs. We find that <= 50 epochs are required to detect 1 - 2 MEarth planets (with < 1 per cent false alarm probability) orbiting slowly rotating 0.1 and 0.2 MSun stars. This sensitivity decreases when typical rotation velocities and activity levels for each stellar mass/spectral type are considered. No detections of below 20 MEarth planets are expected for <= 500 observations for the most active stars with vsini >= 20 km/s and dark spots.
In recent years, analyses of eclipsing binary systems have unveiled differences between the observed fundamental properties of low-mass stars and those predicted by stellar structure models. Particularly, radius and effective temperatures computed fr
Accounting for stellar activity is a crucial component of the search for ever-smaller planets orbiting stars of all spectral types. We use Doppler imaging methods to demonstrate that starspot induced radial velocity variability can be effectively red
We present the discovery of CWISE J203546.35-493611.0, a peculiar M8 companion to the M4.5 star APMPM J2036-4936 discovered through the citizen science project Backyard Worlds: Planet 9. Given CWISE J203546.35-493611.0s proper motion ($mu_{alpha}$, $
We present here optical I-band photometric variability study down to $simeq$ 19 mag of a young ($sim$2-3 Myr) star-forming region IC 348 in the Perseus molecular cloud. We aim to explore the fast rotation (in the time-scales of hours) in Very Low Mas
We report the discovery of a substellar companion to 2MASS J02192210-3925225, a young M6 $gamma$ candidate member of the Tucana-Horologium association (30 - 40 Myr). This L4 $gamma$ companion has been discovered with seeing-limited direct imaging obs