ترغب بنشر مسار تعليمي؟ اضغط هنا

A Carbon-enhanced Metal-poor Damped Lyman alpha System: Probing Gas from Population III Nucleosynthesis?

113   0   0.0 ( 0 )
 نشر من قبل Max Pettini
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present high resolution observations of an extremely metal-poor damped Lyman-alpha system, at z_abs = 2.3400972 in the spectrum of the QSO J0035-0918, exhibiting an abundance pattern consistent with model predictions for the supernova yields of Population III stars. Specifically, this DLA has [Fe/H] = -3.04, shows a clear `odd-even effect, and is C-rich with [C/Fe] = +1.53, a factor of about 20 greater than reported in any other damped Lyman-alpha system. In analogy to the carbon-enhanced metal-poor stars in the Galactic halo (with [C/Fe] > +1.0), this is the first reported case of a carbon-enhanced damped Lyman-alpha system. We determine an upper limit to the mass of 12C, M(12C) < 200 solar masses, which depends on the unknown gas density n(H); if n(H) > 1 atom per cubic cm (which is quite likely for this DLA given its low velocity dispersion), then M(12C) < 2 solar masses, consistent with pollution by only a few prior supernovae. We speculate that DLAs such as the one reported here may represent the `missing link between the yields of Pop III stars and their later incorporation in the class of carbon-enhanced metal-poor stars which show no enhancement of neutron-capture elements (CEMP-no stars).



قيم البحث

اقرأ أيضاً

We report the identification of a very metal-poor damped Lyman-alpha system (DLA) at z_abs = 3.067295 that is modestly carbon-enhanced, with an iron abundance of ~1/700 solar ([Fe/H] = -2.84) and [C,O/Fe] ~ +0.6. Such an abundance pattern is likely t o be the result of nucleosynthesis by massive stars. On the basis of 17 metal absorption lines, we derive a 2 sigma upper limit on the DLAs kinetic temperature of T_DLA <= 4700 K, which is broadly consistent with the range of spin temperature estimates for DLAs at this redshift and metallicity. While the best-fitting abundance pattern shows the expected hallmarks of Population III nucleosynthesis, models of high-mass Population II stars can match the abundance pattern almost as well. We discuss current limitations in distinguishing between these two scenarios and the marked improvement in identifying the remnants of Population III stars expected from the forthcoming generation of 30-metre class telescopes.
65 - Ryan Cooke 2017
We report the discovery and analysis of the most metal-poor damped Lyman-alpha (DLA) system currently known, based on observations made with the Keck HIRES spectrograph. The metal paucity of this system has only permitted the determination of three e lement abundances: [C/H] = -3.43 +/- 0.06, [O/H] = -3.05 +/- 0.05, and [Si/H] = -3.21 +/- 0.05, as well as an upper limit on the abundance of iron: [Fe/H] < -2.81. This DLA is among the most carbon-poor environment currently known with detectable metals. By comparing the abundance pattern of this DLA to detailed models of metal-free nucleosynthesis, we find that the chemistry of the gas is consistent with the yields of a 20.5 M_sun metal-free star that ended its life as a core-collapse supernova; the abundances we measure are inconsistent with the yields of pair-instability supernovae. Such a tight constraint on the mass of the progenitor Population III star is afforded by the well-determined C/O ratio, which we show depends almost monotonically on the progenitor mass when the kinetic energy of the supernova explosion is E_exp > 1.5x10^51 erg. We find that the DLA presented here has just crossed the critical transition discriminant threshold, rendering the DLA gas now suitable for low mass star formation. We also discuss the chemistry of this system in the context of recent models that suggest some of the most metal-poor DLAs are the precursors of the first galaxies, and are the antecedents of the ultra-faint dwarf galaxies.
73 - Sihan Yuan 2015
Utilizing the high-resolution, large-scale LAOZI cosmological simulations we investigate the nature of the metal-poor (${rm [Z/H]<-2}$) damped Lyman alpha systems (mpDLA) at $z=3$. The following physical picture of mpDLAs emerges. The majority of mpD LAs inhabit regions $ge 20$~kpc from the host galaxy center on infalling cold gas streams originating from the intergalactic medium, with infall velocity of $sim 100$ km/s and temperature of $sim 10^{4}$ K. For each host galaxy, on average, about $1%$ of the area within a radius $150$~kpc is covered by mpDLAs. The mpDLAs are relatively diffuse ($n_{rm{gas}} sim 10^{-2}$ cm$^{-3}$), Jeans quasi-stable, and have very low star formation rate ($dot{Sigma} le 10^{-4} M_{odot} rm{ yr}^{-1} rm{ kpc}^{-2}$). As mpDLAs migrate inward to the galaxy center, they mix with high metallicity gas and stellar outflows in the process, removing themselves from the metal-poor category and rendering the central ($le 5$ kpc) regions of galaxies devoid of mpDLAs. Thus, the central regions of the host galaxies are populated by mostly metal-rich DLAs instead of mpDLAs. All observables of the simulated mpDLAs are in excellent agreement with observations, except the gas density, which is about a factor of ten lower than the value inferred observationally. However, the observationally inferred value is based on simplified assumptions that are not borne out in the simulations.
The carbon-enhanced metal-poor (CEMP) stars constitute approximately one fifth of the metal-poor ([Fe/H] ~< -2) population but their origin is not well understood. The most widely accepted formation scenario, invokes mass-transfer of carbon-rich mate rial from a thermally-pulsing asymptotic giant branch (TPAGB) primary star to a less massive main-sequence companion which is seen today. Recent studies explore the possibility that an initial mass function biased toward intermediate-mass stars is required to reproduce the observed CEMP fraction in stars with metallicity [Fe/H] < -2.5. These models also implicitly predict a large number of nitrogen-enhanced metal-poor (NEMP) stars which is not seen. We investigate whether the observed CEMP and NEMP to extremely metal-poor (EMP) ratios can be explained without invoking a change in the initial mass function. We confirm earlier findings that with current detailed TPAGB models the large observed CEMP fraction cannot be accounted for. We find that efficient third dredge up in low-mass (less than 1.25Msun), low-metallicity stars may offer at least a partial explanation to the large observed CEMP fraction while remaining consistent with the small observed NEMP fraction.
The most metal-poor DLA known to date, at z = 2.61843 in the spectrum of the QSO Q0913+072, with an oxygen abundance only about 1/250 of the solar value, shows six well resolved D I Lyman series transitions in high quality echelle spectra recently ob tained with the ESO VLT. We deduce a value of the deuterium abundance log (D/H) = -4.56+/-0.04 which is in good agreement with four out of the six most reliable previous determinations of this ratio in QSO absorbers. We find plausible reasons why in the other two cases the 1 sigma errors may have been underestimated by about a factor of two. The addition of this latest data point does not change significantly the mean value of the primordial abundance of deuterium, suggesting that we are now converging to a reliable measure of this quantity. We conclude that <log (D/H)_p> = -4.55+/-0.03 and Omega_b h^2 (BBN) = 0.0213+/-0.0010 (68% confidence limits). Including the latter as a prior in the analysis of the five year data of WMAP leads to a revised best-fitting value of the power-law index of primordial fluctuations n_s = 0.956+/-0.013 (1 sigma) and n_s < 0.990 with 99% confidence. Considering together the constraints provided by WMAP 5, (D/H)_p, baryon oscillations in the galaxy distribution, and distances to Type Ia supernovae, we arrive at the current best estimates Omega_b h^2 = 0.0224+/-0.0005 and n_s = 0.959+/-0.013.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا