ﻻ يوجد ملخص باللغة العربية
We report on the first generation of 5.5-7.5 MeV protons by a moderate intensity short-pulse laser (4.5 times 1017 W/cm^2, 50 fsec) interacting with H2O nano-wires (snow) deposited on a Sapphire substrate. In this setup, the laser intensity is locally enhanced by the tip of the snow nano-wire, leading to high spatial gradients. Accordingly, the plasma near the tip is subject to enhanced ponderomotive potential, and confined charge separation is obtained. Electrostatic fields of extremely high intensities are produced over the short scale length, and protons are accelerated to MeV-level energies.
Proton (and ion) cancer therapy has proven to be an extremely effective even supe-rior method of treatment for some tumors 1-4. A major problem, however, lies in the cost of the particle accelerator facilities; high procurement costs severely limit t
A method of generating spin polarized proton beams from a gas jet by using a multi-petawatt laser is put forward. With currently available techniques of producing pre-polarized monatomic gases from photodissociated hydrogen halide molecules and petaw
We investigate bulk ion heating in solid buried layer targets irradiated by ultra-short laser pulses of relativistic intensities using particle-in-cell simulations. Our study focuses on a CD2-Al-CD2 sandwich target geometry. We find enhanced deuteron
The propagation of ultra intense laser pulses through matter is connected with the generation of strong moving magnetic fields in the propagation channel as well as the formation of a thin ion filament along the axis of the channel. Upon exiting the
The production of polarized proton beams with multi-GeV energies in ultra-intense laser interaction with targets is studied with three-dimensional Particle-In-Cell simulations. A near-critical density plasma target with pre-polarized proton and triti