ﻻ يوجد ملخص باللغة العربية
The massive stars in the Galactic center inner arcsecond share analogous properties with the so-called Hot Jupiters. Most of these young stars have highly eccentric orbits, and were probably not formed in-situ. It has been proposed that these stars acquired their current orbits from the tidal disruption of compact massive binaries scattered toward the proximity of the central supermassive black hole. Assuming a binary star formed in a thin gaseous disk beyond 0.1 pc from the central object, we investigate the relevance of disk-satellite interactions to harden the binding energy of the binary, and to drive its inward migration. A massive, equal-mass binary star is found to become more tightly wound as it migrates inwards toward the central black hole. The migration timescale is very similar to that of a single-star satellite of the same mass. The binarys hardening is caused by the formation of spiral tails lagging the stars inside the binarys Hill radius. We show that the hardening timescale is mostly determined by the mass of gas inside the binarys Hill radius, and that it is much shorter than the migration timescale. We discuss some implications of the binarys hardening process. When the more massive (primary) components of close binaries eject most their mass through supernova explosion, their secondary stars may attain a range of eccentricities and inclinations. Such processes may provide an alternative unified scenario for the origin of the kinematic properties of the central cluster and S-stars in the Galactic center as well as the high velocity stars in the Galactic halo.
The population of young stars near the Supermassive black hole (SMBH) in the Galactic Center (GC) has presented an unexpected challenge to theories of star formation. Kinematics measurements of these stars have revealed a stellar disk structure (with
Up to present date, no circumbinary planet around contact binaries were discovered neither by transit method nor by the minima times variation, although they are known having third component stars around. We thus ask: where are the circumbinary plane
There is a dense group of OB and Wolf-Rayet stars within a fraction of a parsec from the super-massive black hole (SMBH) at the Galactic Center. These stars appear to be coeval and relatively massive. A subgroup of these stars orbits on the same plan
We present the results of an expanded, long-term radial velocity search (25 yrs) for evidence of binarity in a sample of seven bright proto-planetary nebulae (PPNe). The goal is to investigate the widely-held view that the bipolar or point-symmetric
Massive black holes (MBHs) in galactic nuclei are believed to be surrounded by a high density stellar cluster, whose mass is mostly in hard-to-detect faint stars and compact remnants. Such dark cusps dominate the dynamics near the MBH: a dark cusp in