ﻻ يوجد ملخص باللغة العربية
We give an explicit differential equation which is expected to determine the instanton partition function in the presence of the full surface operator in N=2 SU(N) gauge theory. The differential equation arises as a quantization of a certain Hamiltonian system of isomonodromy type discovered by Fuji, Suzuki and Tsuda.
Strings in $mathcal{N}=2$ supersymmetric ${rm U}(1)^N$ gauge theories with $N$ hypermultiplets are studied in the generic setting of an arbitrary Fayet-Iliopoulos triplet of parameters for each gauge group and an invertible charge matrix. Although th
We discuss the modular anomaly equation satisfied by the the prepotential of 4-dimensional N=2* theories and show that its validity is related to S-duality. The recursion relations that follow from the modular anomaly equation allow one to write the
We describe a class of diffeomorphism invariant SU(N) gauge theories in N^2 dimensions, together with some matter couplings. These theories have (N^2-3)(N^2-1) local degrees of freedom, and have the unusual feature that the constraint associated with
We study weak coupling perturbative series in 4d N=2 and 5d N=1 supersymmetric gauge theories with Lagrangians. We prove that the perturbative series of these theories in zero instanton sector are Borel summable for various observables. Our result fo
Quantization of the geometric quasiconformal realizations of noncompact groups and supergroups leads directly to their minimal unitary representations (minreps). Using quasiconformal methods massless unitary supermultiplets of superconformal groups S