ﻻ يوجد ملخص باللغة العربية
We consider the one-dimensional totally asymmetric simple exclusion model (TASEP model) with open boundary conditions and present the analytical computations leading to the exact formula for distance clearance distribution, i.e. probability density for a clear distance between subsequent particles of the model. The general relation is rapidly simplified for middle part of the one-dimensional lattice using the large $N$ approximation. Both the analytical formulas and their approximations are successfully compared with the numerical representation of the TASEP model. Furthermore, we introduce the pertinent estimation for so-called spectral rigidity of the model. The results obtained are sequentially discussed within the scope of vehicular traffic theory.
We study mixing times of the symmetric and asymmetric simple exclusion process on the segment where particles are allowed to enter and exit at the endpoints. We consider different regimes depending on the entering and exiting rates as well as on the
We revisit the totally asymmetric simple exclusion process with open boundaries (TASEP), focussing on the recent discovery by de Gier and Essler that the model has a dynamical transition along a nontrivial line in the phase diagram. This line coincid
In this research, the totally asymmetric exclusion process without particle number conservation is discussed. Based on the mean field approximation and the Rankine-Hugoniot condition, the necessary and sufficient conditions of the existence of the do
We consider the exclusion process on a ring with time-dependent defective bonds at which the hoping rate periodically switches between zero and one. This system models main roads in city traffics, intersecting with perpendicular streets. We explore b
We study the driven Brownian motion of hard rods in a one-dimensional cosine potential with an amplitude large compared to the thermal energy. In a closed system, we find surprising features of the steady-state current in dependence of the particle d