ﻻ يوجد ملخص باللغة العربية
In order to clarify the origin of the enhancement of the thermal conductivity in the Bose-Einstein Condensed (BEC) state of field-induced triplons, we have measured the thermal conductivity along the [101] direction parallel to spin-chains, $kappa_{|[101]}$, and perpendicular to spin-chains, $kappa_{perp[101]}$, of the S=1/2 bond-alternating spin-chain system Pb2V3O9 in magnetic fields up to 14 T. With increasing field at 3 K, it has been found that both $kappa_{|[101]}$ and $kappa_{perp[101]}$ are suppressed in the gapped normal state in low fields. In the BEC state of field-induced triplons in high fields, on the other hand, $kappa_{|[101]}$ is enhanced with increasing field, while $kappa_{perp[101]}$ is suppressed. That is, the thermal conductivity along the direction, where the magnetic interaction is strong, is markedly enhanced in the BEC state. Accordingly, our results suggest that the enhancement of $kappa_{|[101]}$ in the BEC state is caused by the enhancement of the thermal conductivity due to triplons on the basis of the two-fluid model, as in the case of the superfluid state of liquid 4He.
We determine the phase diagram of copper nitrate Cu(NO$_3$)$_2cdot$2.5D$_2$O in the context of quantum phase transitions and novel states of matter. We establish this compound as an ideal candidate to study quasi-1D Luttinger liquids, 3D Bose-Einstei
The quasi-one-dimensional bond-alternating S=1 quantum antiferromagnet NTENP is studied by single crystal inelastic neutron scattering. Parameters of the measured dispersion relation for magnetic excitations are compared to existing numerical results
The key to unraveling intriguing phenomena observed in various Kitaev materials lies in understanding the interplay of Kitaev ($K$) interaction and a symmetric off-diagonal $Gamma$ interaction. To provide insight into the challenging problems, we stu
We discuss the recent progress and the current status of experimental investigations of spin-mediated energy transport in spin-chain and spin-ladder materials with antiferromagnetic coupling. We briefly outline the central results of theoretical stud
We present inelastic neutron scattering data on the quantum paramagnet AgVOAsO4 that establish the system is a S=1/2 alternating spin chain compound and provide a direct measurement of the spin gap. We also present experimental evidence for two diffe