ﻻ يوجد ملخص باللغة العربية
We define an interesting class of semigroups of operators in Banach spaces, namely, the randomly generated semigroups. This class contains as a remarkable subclass a special type of quantum dynamical semigroups introduced by Kossakowski in the early 1970s. Each randomly generated semigroup is associated, in a natural way, with a pair formed by a representation or an antirepresentation of a locally compact group in a Banach space and by a convolution semigroup of probability measures on this group. Examples of randomly generated semigroups having important applications in physics are briefly illustrated.
Quantum mechanics can be formulated in terms of phase-space functions, according to Wigners approach. A generalization of this approach consists in replacing the density operators of the standard formulation with suitable functions, the so-called gen
In the present paper we investigate the set $Sigma_J$ of all $J$-self-adjoint extensions of a symmetric operator $S$ with deficiency indices $<2,2>$ which commutes with a non-trivial fundamental symmetry $J$ of a Krein space $(mathfrak{H}, [cdot,cdot
We construct exact solutions for a system of two nonlinear partial differential equations describing the spatio-temporal dynamics of a predator-prey system where the prey per capita growth rate is subject to the Allee effect. Using the $big(frac{G}{G
We consider semigroups ${alpha_t: ; tgeq 0}$ of normal, unital, completely positive maps $alpha_t$ on a von Neumann algebra ${mathcal M}$. The (predual) semigroup $ u_t (rho):= rho circ alpha_t$ on normal states $rho$ of $mathcal M$ leaves invariant
Based on the theory of Poisson vertex algebras we calculate skew-symmetry conditions and Jacobi identities for a class of third-order nonlocal operators of differential-geometric type. Hamiltonian operators within this class are defined by a Monge me