ﻻ يوجد ملخص باللغة العربية
One of the goals of the XMM-Newton survey of the Small Magellanic Cloud is the study of the Be/X-ray binary population. During one of our first survey observations a bright new transient - XMMUJ004814.0-732204 - was discovered. We present the analysis of the EPIC X-ray data together with optical observations, to investigate the spectral and temporal characteristics of XMMUJ004814.0-732204. We found coherent X-ray pulsations in the EPIC data with a period of (11.86642 +/- 0.00017) s. The X-ray spectrum can be modelled by an absorbed power-law with indication for a soft excess. Depending on the modelling of the soft X-ray spectrum, the photon index ranges between 0.53 and 0.66. We identify the optical counterpart as a B = 14.9mag star which was monitored during the MACHO and OGLE-III projects. The optical light curves show regular outbursts by ~0.5 mag in B and R and up to 0.9 mag in I which repeat with a time scale of about 1000 days. The OGLE-III optical colours of the star are consistent with an early B spectral type. An optical spectrum obtained at the 1.9 m telescope of the South African Astronomical Observatory in December 2009 shows H_alpha emission with an equivalent width of 3.5 +/- 0.6 A. The X-ray spectrum and the detection of pulsations suggest that XMMUJ004814.0-732204 is a new high mass X-ray binary pulsar in the SMC. The long term variability and the H_alpha emission line in the spectrum of the optical counterpart identify it as a Be/X-ray binary system.
To investigate candidates for Be/X-ray binaries in the Small Magellanic Cloud (SMC), we observed a region around the emission nebula N19 with XMM-Newton in October 2006. We analysed the EPIC data of the detected point sources to derive their spectral
Although numerous archival XMM-Newton observations existed towards the Small Magellanic Cloud (SMC) before 2009, only a fraction of the whole galaxy was covered. Between May 2009 and March 2010 we carried out an XMM-Newton survey of the SMC, in order
In the course of the XMM-Newton survey of the Small Magellanic Cloud (SMC), two new bright X-ray sources were discovered exhibiting the spectral characteris- tics of High Mass X-ray Binaries - but revealing only weak evidence for pulsations in just o
Local-Group galaxies provide access to samples of X-ray source populations of whole galaxies. The XMM-Newton survey of the Small Magellanic Cloud (SMC) completely covers the bar and eastern wing with a 5.6 deg^2 area in the (0.2-12.0) keV band. To ch
A bright X-ray transient was seen during an XMM-Newton observation in the direction of the Small Magellanic Cloud (SMC) in October 2006. The EPIC data allow us to accurately locate the source and to investigate its temporal and spectral behaviour. X-