ترغب بنشر مسار تعليمي؟ اضغط هنا

High-field electron spin resonance spectroscopy study of GdO$_{1-x}$F$_{x}$FeAs superconductors

114   0   0.0 ( 0 )
 نشر من قبل Alexey Alfonsov
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Alfonsov




اسأل ChatGPT حول البحث

We report a detailed investigation of GdO$_{1-x}$F$_{x}$FeAs (x = 0, 0.07 and 0.14) samples by means of high-field/high-frequency electron spin resonance (HF-ESR) together with measurements of thermodynamic and transport properties. The parent GdOFeAs compound exhibits Fe long-range magnetic order below 128 K, whereas both doped samples do not show such order and are superconducting with T$_c$ = 20 K (x = 0.07) and T$_c$ = 45 K (x = 0.14). The Gd$^{3+}$ HF-ESR reveals an appreciable exchange coupling between Gd and Fe moments, through which the static magnetic order is clearly seen in the parent compound. Owing to this coupling, HF-ESR can probe sensitively the evolution of the magnetism in the FeAs planes upon F doping. It is found that in both superconducting samples, where the Fe long-range order is absent, there are short-range, static on the ESR time scale magnetic correlations between Fe spins. Their occurrence on a large doping scale may be indicative of the ground states coexistence.



قيم البحث

اقرأ أيضاً

We measured X-band electron-spin resonance of single crystalline sodium vanadate doped with lithium, Na_{1-x}Li_xV_2O_5 for 0 < x < 1.3% . The phase transition into a dimerized phase that is observed at 34 K in the undoped compound, was found to be s trongly suppressed upon doping with lithium. The spin susceptibility was analyzed to determine the transition temperature and the energy gap with respect to the lithium content. The transition temperature Tsp is suppressed following a square dependence of the lithium concentration while the energy gap is found to decrease linearly. At high temperatures (T>Tsp) the susceptibility remains nearly independent of doping.
We present zero-field {mu}SR measurements for LiY$_{1-x}$Ho$_{x}$F$_{4}$ samples with x = 0.0017, 0.0085, 0.0406, and 0.0855. We characterize the dynamics associated with the formation of the (F-{mu}-F)$^{-1}$ complex by comparing our data to Monte C arlo simulations to determine the concentration range over which the spin dynamics are determined primarily by the Ho$^{3+}$-{mu} interaction rather than the F-{mu} interaction. Simulations show that F-{mu}-F oscillations should evolve into a Lorentzian Kubo-Toyabe decay for an increasing static magnetic field distribution {Gamma} (i.e., increasing x), but the data do not show this behavior, consistent with the recently reported existence of strong magnetic fluctuations in this system at low temperatures. Anisotropy in the field distribution is shown to cause small errors of order 10% from behavior predicted for an isotropic distribution. Finally, numerical calculations show that values of {Gamma} calculated in the single ion limit greatly exceed the values extracted from curve fits, suggesting that strong correlations play an important role in this system.
222 - S. Sharma 2009
Using state-of-the-art first-principles calculations we study the magnetic behaviour of CeOFeAs. We find the Ce layer moments oriented perpendicular to those of the Fe layers. An analysis of incommensurate magnetic structures reveals that the Ce-Ce m agnetic coupling is rather weak with, however, a strong Fe-Ce coupling. Comparison of the origin of the tetragonal to orthorhombic structural distortion in CeOFeAs and LaOFeAs show marked differences; in CeOFeAs the distortion is stabilized by a lowering of spectral weight at the Fermi level, while in LaOFeAs by a reduction in magnetic frustration. Finally, we investigate the impact of electron doping upon CeOFeAs and show that while the ground state Fe moment remains largely unchanged by doping, the stability of magnetic order goes to zero at a doping that corresponds well to the vanishing of the Neel temperature.
A good description of the electronic structure of BiS$_{2}$-based superconductors is essential to understand their phase diagram, normal state and superconducting properties. To describe the first reports of normal state electronic structure features from angle resolved photoemission spectroscopy (ARPES) in LaO$_{1-x}$F$_{x}$BiS$_{2}$, we used a minimal microscopic model to study their low energy properties. It includes the two effective tight-binding bands proposed by Usui et al [Phys.Rev.B 86, 220501(R)(2012)], and we added moderate intra- and inter-orbital electron correlations related to Bi-($p_{Y}$, $p_{X}$) and S-($p_{Y}$, $p_{X}$) orbitals. We calculated the electron Greens functions using their equations of motion, which we decoupled in second-order of perturbations on the correlations. We determined the normal state spectral density function and total density of states for LaO$_{1-x}$F$_{x}$BiS$_{2}$, focusing on the description of the k-dependence, effect of doping, and the prediction of the temperature dependence of spectral properties. Including moderate electron correlations, improves the description of the few experimental ARPES and soft X-ray photoemission data available for LaO$_{1-x}$F$_{x}$BiS$_{2}$. Our analytical approximation enabled us to calculate the spectral density around the conduction band minimum at $vec{k}_{0}=(0.45pi,0.45pi)$, and to predict the temperature dependence of the spectral properties at different BZ points, which might be verified by temperature dependent ARPES.
Strong interplay of spin and charge/orbital degrees of freedom is the fundamental characteristic of the iron-based superconductors (FeSCs), which leads to the emergence of a nematic state as a rule in the vicinity of the antiferromagnetic state. Desp ite intense debate for many years, however, whether nematicity is driven by spin or orbital fluctuations remains unsettled. Here, by use of transport, magnetization, and $^{75}$As nuclear magnetic resonance (NMR) measurements, we show a striking transformation of the relationship between nematicity and spin fluctuations (SFs) in Na$_{1-x}$Li$_x$FeAs; For $xleq 0.02$, the nematic transition promotes SFs. In contrast, for $xgeq 0.03$, the system undergoes a non-magnetic phase transition at a temperature $T_0$ into a distinct nematic state that suppresses SFs. Such a drastic change of the spin fluctuation spectrum associated with nematicity by small doping is highly unusual, and provides insights into the origin and nature of nematicity in FeSCs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا