ترغب بنشر مسار تعليمي؟ اضغط هنا

Soft Gamma-ray Detector for the ASTRO-H Mission

127   0   0.0 ( 0 )
 نشر من قبل Hiroyasu Tajima
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

ASTRO-H is the next generation JAXA X-ray satellite, intended to carry instruments with broad energy coverage and exquisite energy resolution. The Soft Gamma-ray Detector (SGD) is one of ASTRO-H instruments and will feature wide energy band (40-600 keV) at a background level 10 times better than the current instruments on orbit. SGD is complimentary to ASTRO-Hs Hard X-ray Imager covering the energy range of 5-80 keV. The SGD achieves low background by combining a Compton camera scheme with a narrow field-of-view active shield where Compton kinematics is utilized to reject backgrounds. The Compton camera in the SGD is realized as a hybrid semiconductor detector system which consists of silicon and CdTe (cadmium telluride) sensors. Good energy resolution is afforded by semiconductor sensors, and it results in good background rejection capability due to better constraints on Compton kinematics. Utilization of Compton kinematics also makes the SGD sensitive to the gamma-ray polarization, opening up a new window to study properties of gamma-ray emission processes. The ASTRO-H mission is approved by ISAS/JAXA to proceed to a detailed design phase with an expected launch in 2014. In this paper, we present science drivers and concept of the SGD instrument followed by detailed description of the instrument and expected performance.



قيم البحث

اقرأ أيضاً

125 - Shin Watanabe 2015
The Soft Gamma-ray Detector (SGD) is one of the instrument payloads onboard ASTRO-H, and will cover a wide energy band (60--600 keV) at a background level 10 times better than instruments currently in orbit. The SGD achieves low background by combini ng a Compton camera scheme with a narrow field-of-view active shield. The Compton camera in the SGD is realized as a hybrid semiconductor detector system which consists of silicon and cadmium telluride (CdTe) sensors. The design of the SGD Compton camera has been finalized and the final prototype, which has the same configuration as the flight model, has been fabricated for performance evaluation. The Compton camera has overall dimensions of 12 cm x 12 cm x 12 cm, consisting of 32 layers of Si pixel sensors and 8 layers of CdTe pixel sensors surrounded by 2 layers of CdTe pixel sensors. The detection efficiency of the Compton camera reaches about 15% and 3% for 100 keV and 511 keV gamma rays, respectively. The pixel pitch of the Si and CdTe sensors is 3.2 mm, and the signals from all 13312 pixels are processed by 208 ASICs developed for the SGD. Good energy resolution is afforded by semiconductor sensors and low noise ASICs, and the obtained energy resolutions with the prototype Si and CdTe pixel sensors are 1.0--2.0 keV (FWHM) at 60 keV and 1.6--2.5 keV (FWHM) at 122 keV, respectively. This results in good background rejection capability due to better constraints on Compton kinematics. Compton camera energy resolutions achieved with the final prototype are 6.3 keV (FWHM) at 356 keV and 10.5 keV (FWHM) at 662 keV, respectively, which satisfy the instrument requirements for the SGD Compton camera (better than 2%). Moreover, a low intrinsic background has been confirmed by the background measurement with the final prototype.
The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the high-energy universe by performing high -resolution, high-throughput spectroscopy with moderate angular resolution. ASTRO-H covers very wide energy range from 0.3 keV to 600 keV. ASTRO-H allows a combination of wide band X-ray spectroscopy (5-80 keV) provided by multilayer coating, focusing hard X-ray mirrors and hard X-ray imaging detectors, and high energy-resolution soft X-ray spectroscopy (0.3-12 keV) provided by thin-foil X-ray optics and a micro-calorimeter array. The mission will also carry an X-ray CCD camera as a focal plane detector for a soft X-ray telescope (0.4-12 keV) and a non-focusing soft gamma-ray detector (40-600 keV) . The micro-calorimeter system is developed by an international collaboration led by ISAS/JAXA and NASA. The simultaneous broad bandpass, coupled with high spectral resolution of Delta E ~7 eV provided by the micro-calorimeter will enable a wide variety of important science themes to be pursued.
The Soft X-ray Imager (SXI) is an imaging spectrometer using charge-coupled devices (CCDs) aboard the Hitomi X-ray observatory. The SXI sensor has four CCDs with an imaging area size of $31~{rm mm} times 31~{rm mm}$ arranged in a $2 times 2$ array. C ombined with the X-ray mirror, the Soft X-ray Telescope, the SXI detects X-rays between $0.4~{rm keV}$ and $12~{rm keV}$ and covers a $38^{prime} times 38^{prime}$ field-of-view. The CCDs are P-channel fully-depleted, back-illumination type with a depletion layer thickness of $200~mu{rm m}$. Low operation temperature down to $-120~^circ{rm C}$ as well as charge injection is employed to reduce the charge transfer inefficiency of the CCDs. The functionality and performance of the SXI are verified in on-ground tests. The energy resolution measured is $161$-$170~{rm eV}$ in full width at half maximum for $5.9~{rm keV}$ X-rays. In the tests, we found that the CTI of some regions are significantly higher. A method is developed to properly treat the position-dependent CTI. Another problem we found is pinholes in the Al coating on the incident surface of the CCDs for optical light blocking. The Al thickness of the contamination blocking filter is increased in order to sufficiently block optical light.
Gamma-Ray Integrated Detectors (GRID) mission is a student project designed to use multiple gamma-ray detectors carried by nanosatellites (CubeSats), forming a full-time all-sky gamma-ray detection network that monitors the transient gamma-ray sky in the multi-messenger astronomy era. A compact CubeSat gamma-ray detector, including its hardware and firmware, was designed and implemented for the mission. The detector employs four Gd2Al2Ga3O12 : Ce (GAGG:Ce) scintillators coupled with four silicon photomultiplier (SiPM) arrays to achieve a high gamma-ray detection efficiency between 10 keV and 2 MeV with low power and small dimensions. The first detector designed by the undergraduate student team onboard a commercial CubeSat was launched into a Sun-synchronous orbit on October 29, 2018. The detector was in a normal observation state and accumulated data for approximately one month after on-orbit functional and performance tests, which were conducted in 2019.
The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the high-energy universe via a suite of fou r instruments, covering a very wide energy range, from 0.3 keV to 600 keV. These instruments include a high-resolution, high-throughput spectrometer sensitive over 0.3-2 keV with high spectral resolution of Delta E < 7 eV, enabled by a micro-calorimeter array located in the focal plane of thin-foil X-ray optics; hard X-ray imaging spectrometers covering 5-80 keV, located in the focal plane of multilayer-coated, focusing hard X-ray mirrors; a wide-field imaging spectrometer sensitive over 0.4-12 keV, with an X-ray CCD camera in the focal plane of a soft X-ray telescope; and a non-focusing Compton-camera type soft gamma-ray detector, sensitive in the 40-600 keV band. The simultaneous broad bandpass, coupled with high spectral resolution, will enable the pursuit of a wide variety of important science themes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا