There has been substantial progress recently in understanding toy problems of purely implicit signaling. These are problems where the source and the channel are implicit -- the message is generated endogenously by the system, and the plant itself is used as a channel. In this paper, we explore how implicit and explicit communication can be used synergistically to reduce control costs. The setting is an extension of Witsenhausens counterexample where a rate-limited external channel connects the two controllers. Using a semi-deterministic version of the problem, we arrive at a binning-based strategy that can outperform the best known strategies by an arbitrarily large factor. We also show that our binning-based strategy attains within a constant factor of the optimal cost for an asymptotically infinite-length version of the problem uniformly over all problem parameters and all rates on the external channel. For the scalar case, although our results yield approximate optimality for each fixed rate, we are unable to prove approximately-optimality uniformly over all rates.