Unwinding dynamics of double-stranded polymers


الملخص بالإنكليزية

We consider the unwinding of two lattice polymer strands of length N that are initially wound around each other in a double-helical conformation and evolve through Rouse dynamics. The problem relates to quickly bringing a double-stranded polymer well above its melting temperature, i.e., the binding interactions between the strands are neglected, and the strands separate from each other as it is entropically favorable for them to do so. The strands unwind by rotating around each other until they separate. We find that the process proceeds from the ends inward; intermediate conformations can be characterized by a tightly wound inner part, from which loose strands are sticking out, with length l~t^0.39. The total time needed for the two strands to unwind scales as a power of N as tu~N^(2.57+-0.03). We present a theoretical argument, which suggests that during this unwinding process, these loose strands are far out of equilibrium.

تحميل البحث