ترغب بنشر مسار تعليمي؟ اضغط هنا

Galaxy stellar mass functions of different morphological types in clusters, and their evolution between z=0.8 and z=0

129   0   0.0 ( 0 )
 نشر من قبل Benedetta Vulcani
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Benedetta Vulcani




اسأل ChatGPT حول البحث

We present the galaxy stellar mass function (MF) and its evolution in clusters from z~0.8 to the current epoch, based on the WIde-field Nearby Galaxy-cluster Survey (WINGS) (0.04<z<0.07), and the ESO Distant Cluster Survey (EDisCS) (0.4<z <0.8). We investigate the total MF and find it evolves noticeably with redshift. The shape at M*>10^11 M does not evolve, but below M*~10^10.8 M the MF at high redshift is flat, while in the Local Universe it flattens out at lower masses. The population of M* = 10^10.2 - 10^10.8 M galaxies must have grown significantly between z=0.8 and z=0. We analyze the MF of different morphological types (ellipticals, S0s and late-types), and find that also each of them evolves with redshift. All types have proportionally more massive galaxies at high- than at low-z, and the strongest evolution occurs among S0 galaxies. Examining the morphology-mass relation (the way the proportion of galaxies of different morphological types changes with galaxy mass), we find it strongly depends on redshift. At both redshifts, ~40% of the stellar mass is in elliptical galaxies. Another ~43% of the mass is in S0 galaxies in local clusters, while it is in spirals in distant clusters. To explain the observed trends, we discuss the importance of those mechanisms that could shape the MF. We conclude that mass growth due to star formation plays a crucial role in driving the evolution. It has to be accompanied by infall of galaxies onto clusters, and the mass distribution of infalling galaxies might be different from that of cluster galaxies. However, comparing with high-z field samples, we do not find conclusive evidence for such an environmental mass segregation. Our results suggest that star formation and infall change directly the MF of late-type galaxies in clusters and, indirectly, that of early-type galaxies through subsequent morphological transformations.



قيم البحث

اقرأ أيضاً

159 - E. Puddu , M. Radovich , M. Sereno 2020
By means of the $r$-band luminosity function (LF) of galaxies in a sample of about 4000 clusters detected by the cluster finder AMICO in the KiDS-DR3 area of about 400 deg$^2$, we studied the evolution with richness and redshift of the passive evolvi ng (red), star-forming (blue), and total galaxy populations. This analysis was performed for clusters in the redshift range [0.1,0.8] and in the mass range [$10^{13} M_{odot}$,$10^{15} M_{odot}$]. To compute LFs, we binned the luminosity distribution in magnitude and statistically subtracted the background. Then, we divided the cluster sample in bins of both redshift and richness/mass. We stacked LF counts in each 2D bin for the total, red, and blue galaxy populations; finally, we fitted the stacked LF with a Schechter function and studied the trend of its parameters with redshift and richness/mass. We found a passive evolution with $z$ for the bright part of the LF for the red and total populations and no significant trends for the faint galaxies. The mass/richness dependence is clear for the density parameter $Phi_{star}$, increasing with richness, and for the total population faint end, which is shallower in the rich clusters.
129 - Benedetta Vulcani 2010
We present the ellipticity distribution and its evolution for early-type galaxies in clusters from z~0.8 to z~0, based on the WIde-field Nearby Galaxy-cluster Survey (WINGS)(0.04<z<0.07), and the ESO Distant Cluster Survey (EDisCS)(0.4<z<0.8). We fir st investigate a mass limited sample and we find that, above a fixed mass limit, the ellipticity distribution of early-types noticeably evolves with redshift. In the local Universe there are proportionally more galaxies with higher ellipticity, hence flatter, than in distant clusters. This evolution is due partly to the change of the mass distribution and mainly to the change of the morphological mix with z (among the early types, the fraction of ellipticals goes from ~70% at high to ~40% at low-z). Analyzing separately the ellipticity distribution of the different morphological types, we find no evolution both for ellipticals and S0s. However, for ellipticals a change with redshift in the median value of the distributions is detected. This is due to a larger population of very round (e<0.05) elliptical galaxies at low-z. To compare our finding to previous studies, we also assemble a magnitude-delimited sample that consists of early-type galaxies on the red sequence with -19.3>M_B+1.208z>-21. Analyzing this sample, we do not recover exactly the same results of the mass-limited sample. Hence the selection criteria are crucial to characterize the galaxy properties: the choice of the magnitude-delimited sample implies the loss of many less massive galaxies and so it biases the final results. Moreover, although we are adopting the same selection criteria, our results in the magnitude-delimited sample are also not in agreement with those of Holden et al.(2009). This is due to the fact that our and their low-z samples have a different magnitude distribution because the Holden et al.(2009) sample suffers from incompleteness at faint magnitudes.
We derive stellar masses from SED fitting to rest-frame optical and UV fluxes for 401 star-forming galaxies at z 4, 5, and 6 from Hubble-WFC3/IR observations of the ERS combined with the deep GOODS-S Spitzer/IRAC data (and include a previously-publis hed z 7 sample). A mass-luminosity relation with strongly luminosity-dependent M/Luv ratios is found for the largest sample (299 galaxies) at z 4. The relation M propto L_{UV,1500}^(1.7+/-0.2) has a well-determined intrinsic sample variance of 0.5 dex. This relation is also consistent with the more limited samples at z 5-7. This z 4 mass-luminosity relation, and the well-established faint UV luminosity functions at z 4-7, are used to derive galaxy mass functions (MF) to masses M~10^8 at z 4-7. A bootstap approach is used to derive the MFs to account for the large scatter in the M--Luv relation and the luminosity function uncertainties, along with an analytical crosscheck. The MFs are also corrected for the effects of incompleteness. The incompleteness-corrected MFs are steeper than previously found, with slopes alpha_M-1.4 to -1.6 at low masses. These slopes are, however, still substantially flatter than the MFs obtained from recent hydrodynamical simulations. We use these MFs to estimate the stellar mass density (SMD) of the universe to a fixed M_{UV,AB}<-18 as a function of redshift and find a SMD growth propto(1+z)^{-3.4 +/-0.8} from z 7 to z 4. We also derive the SMD from the completeness-corrected MFs to a mass limit M~10^{8} Msun. Such completeness-corrected MFs and the derived SMDs will be particularly important for model comparisons as future MFs reach to lower masses.
We examined the morphology-density relations for galaxy samples selected by luminosity and by mass in each of five massive X-ray clusters from z=0.023 to 0.83 for 674 spectroscopically-confirmed members. Rest-frame optical colors and visual morpholog ies were obtained primarily from Hubble Space Telescope images. Morphology-density relations (MDR) are derived in each cluster from a complete, luminosity-selected sample of 452 galaxies with a magnitude limit M_V < M^{*}_{V} + 1. The change in the early-type fraction with redshift matches previous work for massive clusters of galaxies. We performed a similar analysis, deriving MDRs for complete, mass-selected samples of 441 galaxies with a mass-limit of 10^{10.6} M_{sun}. Our mass limit includes faint objects, the equivalent of =~1 mag below L^{*} for the red cluster galaxies, and encompasses =~70% of the stellar mass in cluster galaxies. The MDRs in the mass-selected sample at densities of Sigma > 50 galaxies Mpc^{-2} are similar to those in the luminosity-selected sample but show larger early-type fractions. However, the trend with redshift in the fraction of elliptical and S0 galaxies with masses > 10^{10.6} M_{sun} differs significantly between the mass- and luminosity-selected samples. The clear trend seen in the early-type fraction from z=0 to z=~ 0.8 is not found in mass-selected samples. The early-type galaxy fraction changes much less, and is consistent with being constant at 92% +/- 4% at Sigma> 500 galaxies Mpc^{-2} and 83 +/- 3% at 50 < Sigma < 500 galaxies Mpc^{-2}. This suggests that galaxies of mass lower than > 10^{10.6} M_{sun} play a significant role in the evolution of the early-type fraction in luminosity-selected samples. (Abstract abridged)
We present the first study of the evolution of the galaxy luminosity and stellar-mass functions (GLF and GSMF) carried out by the Dark Energy Survey (DES). We describe the COMMODORE galaxy catalogue selected from Science Verification images. This cat alogue is made of $sim 4times 10^{6}$ galaxies at $0<zlesssim1.3$ over a sky area of $sim155 {rm sq. deg}$ with ${it i}$-band limiting magnitude ${it i}=23 {rm mag}$. Such characteristics are unprecedented for galaxy catalogues and they enable us to study the evolution of GLF and GSMF at $0<z<1$ homogeneously with the same statistically-rich data-set and free of cosmic variance effects. The aim of this study is twofold: i) we want to test our method based on the use of photometric-redshift probability density functions against literature results obtained with spectroscopic redshifts; ii) we want to shed light on the way galaxies build up their masses over cosmic time. We find that both the ${it i}$-band galaxy luminosity and stellar mass functions are characterised by a double-Schechter shape at $z<0.2$. Both functions agree well with those based on spectroscopic redshifts. The DES GSMF agrees especially with those measured for the GAlaxy Mass Assembly and the PRism MUlti-object Survey out to $zsim1$. At $0.2<z<1$, we find the ${it i}$-band luminosity and stellar-mass densities respectively to be constant ($rho_{rm L}propto (1+z)^{-0.12pm0.11}$) and decreasing ($rho_{rm Mstar}propto (1+z)^{-0.5pm0.1}$) with $z$. This indicates that, while at higher redshift galaxies have less stellar mass, their luminosities do not change substantially because of their younger and brighter stellar populations. Finally, we also find evidence for a top-down mass-dependent evolution of the GSMF.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا