ﻻ يوجد ملخص باللغة العربية
Small-scale inhomogeneities, or `clumping, in the winds of hot, massive stars are conventionally included in spectral analyses by assuming optically thin clumps. To reconcile investigations of different diagnostics using this microclumping technique, very low mass-loss rates must be invoked for O stars. Recently it has been suggested that by using the microclumping approximation one may actually drastically underestimate the mass-loss rates. Here we demonstrate this, present a new, improved description of clumpy winds, and show how corresponding models, in a combined UV and optical analysis, can alleviate discrepancies between previously derived rates and those predicted by the line-driven wind theory. Furthermore, we show that the structures obtained in time-dependent, radiation-hydrodynamic simulations of the intrinsic line-driven instability of such winds, which are the basis to our current understanding of clumping, in their present-day form seem unable to provide a fully self-consistent, simultaneous fit to both UV and optical lines. The reasons for this are discussed.
We calculate global (unified) wind models of main-sequence, giant, and supergiant O stars from our Galaxy. The models are calculated by solving hydrodynamic, kinetic equilibrium (also known as NLTE) and comoving-frame (CMF) radiative transfer equatio
This review describes the evidence for small-scale structure, `clumping, in the radiation line-driven winds of hot, massive stars. In particular, we focus on examining to what extent simulations of the strong instability inherent to line-driving can
We investigate the impact of optically thick clumping on stellar wind diagnostics in O supergiants and constrain wind parameters associated with porosity in velocity space. This is the first time the effects of optically thick clumping have been inve
We investigate the effects of stellar limb-darkening and photospheric perturbations for the onset of wind structure arising from the strong, intrinsic line-deshadowing instability (LDI) of a line-driven stellar wind. A linear perturbation analysis sh
We construct helium (He) star models with optically thick winds and compare them with the properties of Galactic Wolf-Rayet (WR) stars. Hydrostatic He-core solutions are connected smoothly to trans-sonic wind solutions that satisfy the regularity con