ﻻ يوجد ملخص باللغة العربية
We discover weak antilocalization effect of two-dimensional electron gas with one electric subband occupied in the inversion layer on p-type HgCdTe crystal. By fitting the model of Iordanskii, Lyanda-Geller and Pikus to data at varies temperatures and gate voltages, we extract phase coherence and spin-orbit scattering times as functions of temperature and carrier density. We find that Elliot-Yafet mechanism and Nyquist mechanism are the dominating spin decoherence and dephasing mechanisms, respectively. We also find that the Rashba parameter is relatively large and the dependence of Rashba parameter upon carrier density is not monotonic and an optimal carrier density exists for the maximization of spin-orbit coupling.
Magnetoconductance of a gated two-dimensional electron gas (2DEG) in the inversion layer on p-type HgCdTe crystal is investigated. At strong magnetic fields, characteristic features such as quantum Hall effect of a 2DEG with single subband occupation
A clear gate voltage tunable weak antilocalization and a giant magnetoresistance of 400 percent are observed at 1.9 K in single layer graphene with an out-of-plane field. A large magnetoresistance value of 275 percent is obtained even at room tempera
We report electron transport studies in an encapsulated few-layer WTe$_2$ at low temperatures and high magnetic fields. The magnetoconductance reveals a temperature-induced crossover between weak antilocalization (WAL) and weak localization (WL) in q
The results of experimental study of the magnetoconductivity of 2D electron gas caused by suppression of the interference quantum correction in HgTe single quantum well heterostructure with the inverted energy spectrum are presented. It is shown that
Metallic transition metal dichalcogenides (TMDs) have exhibited various exotic physical properties and hold the promise of novel optoelectronic and topological devices applications. However, the synthesis of metallic TMDs is based on gas-phase method