ﻻ يوجد ملخص باللغة العربية
We study the 6-dimensional dynamics -- position and orientation -- of a large sphere advected by a turbulent flow. The movement of the sphere is recorded with 2 high-speed cameras. Its orientation is tracked using a novel, efficient algorithm; it is based on the identification of possible orientation `candidates at each time step, with the dynamics later obtained from maximization of a likelihood function. Analysis of the resulting linear and angular velocities and accelerations reveal a surprising intermittency for an object whose size lies in the integral range, close to the integral scale of the underlying turbulent flow.
We study the melting dynamics of large ice balls in a turbulent von Karman flow at very high Reynolds number. Using an optical shadowgraphy setup, we record the time evolution of particle sizes. We study the heat transfer as a function of the particl
In recent works, we proposed a hypothesis that the turbulence in gases could be produced by particles interacting via a potential, and examined the proposed mechanics of turbulence formation in a simple model of two particles for a variety of differe
Three-dimensional particle tracking experiments were conducted in a turbulent boundary layer with friction Reynolds number $Re_tau$ of 700 and 1300. Two finite size spheres with specific gravities of 1.003 (P1) and 1.050 (P2) and diameters of 60 and
The unsteady, lineal translation of a solid spherical particle through viscoelastic fluids described by the Johnson-Segalman and Giesekus models is studied analytically. Solutions for the pressure and velocity fields as well as the force on the parti
Plane Couette flow presents a regular oblique turbulent-laminar pattern over a wide range of Reynolds numbers R between the globally stable base flow profile at low R<R_g and a uniformly turbulent regime at sufficiently large R>R_t. The numerical sim