ترغب بنشر مسار تعليمي؟ اضغط هنا

Review about populations of Be stars: stellar evolution of extreme stars

115   0   0.0 ( 0 )
 نشر من قبل Christophe Martayan
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Among the emission-line stars, the classical Be stars known for their extreme properties are remarkable. The Be stars are B-type main sequence stars that have displayed at least once in their life emission lines in their spectrum. Beyond this phenomenological approach some progresses were made on the understanding of this class of stars. With high-technology techniques (interferometry, adaptive optics, multi-objects spectroscopy, spectropolarimetry, high-resolution photometry, etc) from different instruments and space mission such as the VLTI, CHARA, FLAMES, ESPADONS-NARVAL, COROT, MOST, SPITZER, etc, some discoveries were performed allowing to constrain the modelling of the Be stars stellar evolution but also their circumstellar decretion disks. In particular, the confrontation between theory and observations about the effects of the stellar formation and evolution on the main sequence, the metallicity, the magnetic fields, the stellar pulsations, the rotational velocity, and the binarity (including the X-rays binaries) on the Be phenomenon appearance is discussed. The disks observations and the efforts made on their modelling is mentioned. As the life of a star does not finish at the end of the main sequence, we also mention their stellar evolution post main sequence including the gamma-ray bursts. Finally, the different new results and remaining questions about the main physical properties of the Be stars are summarized and possible ways of investigations proposed. The recent and future facilities (XSHOOTER, ALMA, E-ELT, TMT, GMT, JWST, GAIA, etc) and their instruments that may help to improve the knowledge of Be stars are also briefly introduced.



قيم البحث

اقرأ أيضاً

Aims. The X-shooter archive of several thousand telluric star spectra was skimmed for Be and Be-shell stars to derive the stellar fundamental parameters and statistical properties, in particular for the less investigated late type Be stars, and the e xtension of the Be phenomenon into early A stars. Methods. An adapted version of the BCD method is used, utilizing the Balmer discontinuity parameters to determine effective temperature and surface gravity. This method is optimally suited for late B stars. The projected rotational velocity was obtained by profile fitting to the Mg ii lines of the targets, and the spectra were inspected visually for the presence of peculiar features such as the infrared Ca ii triplet or the presence of a double Balmer discontinuity. The Balmer line equivalent widths were measured, but due to uncertainties in determining the photospheric contribution are useful only in a subsample of Be stars for determining the pure emission contribution. Results. A total of 78 Be stars, mostly late type ones, were identified in the X-shooter telluric standard star archive, out of which 48 had not been reported before. The general trend of late type Be stars having more tenuous disks and being less variable than early type ones is confirmed. The relatively large number (48) of relatively bright (V > 8.5) additional Be stars casts some doubt on the statistics of late type Be stars; they are more common than currently thought: The Be/B star fraction may not strongly depend on spectral subtype.
Star clusters are privileged laboratories for studying the evolution of massive stars (OB stars). One particularly interesting question concerns the phases, during which the classical Be stars occur, which unlike HAe/Be stars, are not pre-main sequen ce objects, nor supergiants. Rather, they are extremely rapidly rotating B-type stars with a circumstellar decretion disk formed by episodic ejections of matter from the central star. To study the impact of mass, metallicity, and age on the Be phase, we observed SMC open clusters with two different techniques: 1) with the ESO-WFI in its slitless mode, which allowed us to find the brighter Be and other emission-line stars in 84 SMC open clusters 2) with the VLT-FLAMES multi-fiber spectrograph in order to determine accurately the evolutionary phases of Be stars in the Be-star rich SMC open cluster NGC 330. Based on a comparison to the Milky Way, a model of Be stellar evolution / appearance as a function of metallicity and mass / spectral type is developed, involving the fractional critical rotation rate as a key parameter.
153 - Gregory A. Feiden 2015
Stellar evolution models are a cornerstone of young star astrophysics, which necessitates that they yield accurate and reliable predictions of stellar properties. Here, I review the current performance of stellar evolution models against young astrop hysical benchmarks and highlight recent progress incorporating non-standard physics, such as magnetic field and starspots, to explain observed deficiencies. While addition of these physical processes leads to improved agreement between models and observations, there are several fundamental limitations in our understanding about how these physical processes operate. These limitations inhibit our ability to form a coherent picture of the essential physics needed to accurately compute young stellar models, but provide rich avenues for further exploration.
132 - Hans Van Winckel 2018
In this chapter the focus is on the properties of post-Asymptotic Giant Branch (post-AGB) stars in binary systems. Their Spectral Energy Distributions (SEDs) are very characteristic: they show a near-infrared excess, indicative of the presence of war m dust, while the central stars are too hot to be in a dust-production evolutionary phase. This allows for an efficient detection of binary post-AGB candidates. It is now well established that the near-infrared excess is produced by the inner rim of a stable dusty disc that surrounds the binary system. These discs are scaled-
Many main-sequence F and early G stars are too luminous for their effective temperature, surface gravity, and chemical composition. These {it overluminous stars} have two curious properties. First, their kinematics as a function of age from stellar e volution modeling (isochrone fitting) is very different from that of normal stars. Second, while X-ray luminosity of normal stars declines with age, the X-ray luminosity of overluminous F stars changes in the opposite direction, being on average higher for older stars. These properties imply that, in defiance of standard models of stellar evolution, F stars of a given mass and chemical composition can evolve very differently. Assuming that the models correctly describe normal stars, for overluminous F stars they predict too young age and the X-ray emission evolving in the direction opposite to the actually observed trend. This discrepancy between modeling results and observational data suggests that standard stellar evolution models and models of stellar activity are missing some important factors, which makes stellar age and predictions for stellar activity from these models problematic. The data and literature analysis presented in this paper point to a nonuniform rotation of the stellar interior as a plausible key factor able to reconcile the divergent trends in age-velocity relationships of normal and overluminous F stars and explain in a coherent and self-consistent way the overluminosity phenomenon.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا