ترغب بنشر مسار تعليمي؟ اضغط هنا

Deuterated species in extragalactic star-forming regions

319   0   0.0 ( 0 )
 نشر من قبل Bayet Estelle
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a theoretical study of the deuterated species detectability in various types of extragalactic star-forming regions based on our predictions of chemical abundances. This work is motivated by the past and current attempts at observing deuterated species in external galaxies such as NGC~253, IC~342 and the LMC. Here, we investigate the influence of the density, the temperature, the FUV radiation field, the cosmic ray ionisation, and the metallicity on the fractional abundances and D/H abundance ratios of about 20 deuterated species. Without modelling any particular source, we determined how the deuterium chemistry behaves in different physical environments such as starburst, cosmic-rays enhanced environments, low metallicity and high redshift galaxies. In general, our predicted column densities seem in good agreement with those derived from the current limited dataset of observations in external galaxies. We provide, for the first time, a list of key deuterated species whose abundances are high enough to be possibly detectable by the Atacama Large Millimeter Array (ALMA) and Herschel, as a function of galactic nuclear activity and redshift.



قيم البحث

اقرأ أيضاً

Deuterated molecules are good tracers of the evolutionary stage of star-forming cores. During the star formation process, deuterated molecules are expected to be enhanced in cold, dense pre-stellar cores and to deplete after protostellar birth. In th is paper we study the deuteration fraction of formaldehyde in high-mass star-forming cores at different evolutionary stages to investigate whether the deuteration fraction of formaldehyde can be used as an evolutionary tracer. Using the APEX SEPIA Band 5 receiver, we extended our pilot study of the $J$=3$rightarrow$2 rotational lines of HDCO and D$_2$CO to eleven high-mass star-forming regions that host objects at different evolutionary stages. High-resolution follow-up observations of eight objects in ALMA Band 6 were performed to reveal the size of the H$_2$CO emission and to give an estimate of the deuteration fractions HDCO/H$_2$CO and D$_2$CO/HDCO at scales of $sim$6 (0.04-0.15 pc at the distance of our targets). Our observations show that singly- and doubly deuterated H$_2$CO are detected toward high-mass protostellar objects (HMPOs) and ultracompact HII regions (UCHII regions), the deuteration fraction of H$_2$CO is also found to decrease by an order of magnitude from the earlier HMPO phases to the latest evolutionary stage (UCHII), from $sim$0.13 to $sim$0.01. We have not detected HDCO and D$_2$CO emission from the youngest sources (high-mass starless cores, HMSCs). Our extended study supports the results of the previous pilot study: the deuteration fraction of formaldehyde decreases with evolutionary stage, but higher sensitivity observations are needed to provide more stringent constraints on the D/H ratio during the HMSC phase. The calculated upper limits for the HMSC sources are high, so the trend between HMSC and HMPO phases cannot be constrained.
224 - J. E. Young 2013
We present a study of the morphology and intensity of star formation in the host galaxies of eight Palomar-Green quasars using observations with the Hubble Space Telescope. Our observations are motivated by recent evidence for a close relationship be tween black hole growth and the stellar mass evolution in its host galaxy. We use narrow-band [O II] $lambda$3727, H$beta$, [O III] $lambda$5007 and Pa$alpha$ images, taken with the WFPC2 and NICMOS instruments, to map the morphology of line-emitting regions, and, after extinction corrections, diagnose the excitation mechanism and infer star-formation rates. Significant challenges in this type of work are the separation of the quasar light from the stellar continuum and the quasar-excited gas from the star-forming regions. To this end, we present a novel technique for image decomposition and subtraction of quasar light. Our primary result is the detection of extended line-emitting regions with sizes ranging from 0.5 to 5 kpc and distributed symmetrically around the nucleus, powered primarily by star formation. We determine star-formation rates of order a few tens of M$_odot$/yr. The host galaxies of our target quasars have stellar masses of order $10^{11}$ M$_odot$ and specific star formation rates on a par with those of M82 and luminous infrared galaxies. As such they fall at the upper envelope or just above the star-formation mass sequence in the specific star formation vs stellar mass diagram. We see a clear trend of increasing star formation rate with quasar luminosity, reinforcing the link between the growth of the stellar mass of the host and the black hole mass found by other authors.
The formation of deuterated molecules is favoured at low temperatures and high densities. Therefore, the deuteration fraction D$_{frac}$ is expected to be enhanced in cold, dense prestellar cores and to decrease after protostellar birth. Previous stu dies have shown that the deuterated forms of species such as N2H+ (formed in the gas phase) and CH3OH (formed on grain surfaces) can be used as evolutionary indicators and to constrain their dominant formation processes and time-scales. Formaldehyde (H2CO) and its deuterated forms can be produced both in the gas phase and on grain surfaces. However, the relative importance of these two chemical pathways is unclear. Comparison of the deuteration fraction of H2CO with respect to that of N2H+, NH3 and CH3OH can help us to understand its formation processes and time-scales. With the new SEPIA Band 5 receiver on APEX, we have observed the J=3-2 rotational lines of HDCO and D2CO at 193 GHz and 175 GHz toward three massive star forming regions hosting objects at different evolutionary stages: two High-mass Starless Cores (HMSC), two High-mass Protostellar Objects (HMPOs), and one Ultracompact HII region (UCHII). By using previously obtained H2CO J=3-2 data, the deuteration fractions HDCO/H2CO and D2CO/HDCO are estimated. Our observations show that singly-deuterated H2CO is detected toward all sources and that the deuteration fraction of H2CO increases from the HMSC to the HMPO phase and then sharply decreases in the latest evolutionary stage (UCHII). The doubly-deuterated form of H2CO is detected only in the earlier evolutionary stages with D2CO/H2CO showing a pattern that is qualitatively consistent with that of HDCO/H2CO, within current uncertainties. Our initial results show that H2CO may display a similar D$_{frac}$ pattern as that of CH3OH in massive young stellar objects. This finding suggests that solid state reactions dominate its formation.
The abundance of polycyclic aromatic hydrocarbons (PAHs) in low- and high-metallicity galaxies has been widely discussed since the time when detailed infrared data for extragalactic objects were first obtained. On the scales of entire galaxies, a sma ller PAH abundance in lower-metallicity galaxies is often observed. We study this relationship for star-forming regions in nearby galaxies, for a sample containing more than 200 HII complexes, using spatially-resolved observations from the Herschel Space Observatory and Spitzer Space Telescope. We use a model for the dust emission to estimate the physical parameters (PAH abundance, metallicity, ultraviolet radiation field, etc.) of these complexes. The same correlation of PAH abundance with metallicity, as seen for entire galaxies, is apparently preserved at smaller scales, at least when the Kobulnicky & Kewley metallicity calibration is used. We discuss possible reasons for this correlation, noting that traces of less-effective PAH formation in low-metallicity AGB stars should be smeared out by radial mixing in galactic disks. Effective destruction by the harder and more intensive ultraviolet field in low-metallicity environments is qualitatively consistent with our data, as the ultraviolet field intensity, derived from the infrared photometry, is indeed smaller in HII complexes with lower metallicity.
Maser emission plays an important role as a tool in star formation studies. It is widely used for deriving kinematics, as well as the physical conditions of different structures, hidden in the dense environment very close to the young stars, for exam ple associated with the onset of jets and outflows. We will summarize the recent observational and theoretical progress on this topic since the last maser symposium: the IAU Symposium 242 in Alice Springs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا