ﻻ يوجد ملخص باللغة العربية
The state of the vortex lattice extremely close to the superconducting to normal transition in an applied magnetic field is investigated in high purity niobium. We observe that thermal fluctuations of the order parameter broaden the superconducting to normal transition into a crossover but no sign of a first order vortex lattice melting transition is detected in measurements of the heat capacity or the small angle neutron scattering (SANS) intensity. Direct observation of the vortices via SANS always finds a well ordered vortex lattice. The fluctuation broadening is considered in terms of the Lowest Landau Level theory of critical fluctuations and scaling is found to occur over a large H_{c2}(T) range.
The full H-T phase diagram in the nematic superconductor FeSe is mapped out using specific-heat and thermal-expansion measurements down to 0.7 K and up to 30 T for both field directions. A clear thermodynamic signal of an underlying vortex-melting tr
Inverse melting, in which a crystal reversibly transforms into a liquid or amorphous phase upon decreasing the temperature, is considered to be very rare in nature. The search for such an unusual equilibrium phenomenon is often hampered by the format
The melting of the magnetic vortex lattice has been observed in high-Tc superconductors in many experiments by different groups and is regarded as confirmed. To date, only one group claims to have observed the vortex-lattice melting in the low-Tc sup
In cuprate high-temperature superconductors the small coherence lengths and high transition termperatures result in strong thermal fluctuations, which render the superconducting transition in applied magnetic fields into a wide continuous crossover.
Vortices in topological superconductors are predicted to host Majorana bound states (MBSs) as exotic quasiparticles. In recent experiments, the spatially non-split zero-energy vortex bound state in topological superconductors has been regarded as an