ترغب بنشر مسار تعليمي؟ اضغط هنا

The Absence of Vortex Lattice Melting in a Conventional Superconductor

140   0   0.0 ( 0 )
 نشر من قبل Charlotte Bowell
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The state of the vortex lattice extremely close to the superconducting to normal transition in an applied magnetic field is investigated in high purity niobium. We observe that thermal fluctuations of the order parameter broaden the superconducting to normal transition into a crossover but no sign of a first order vortex lattice melting transition is detected in measurements of the heat capacity or the small angle neutron scattering (SANS) intensity. Direct observation of the vortices via SANS always finds a well ordered vortex lattice. The fluctuation broadening is considered in terms of the Lowest Landau Level theory of critical fluctuations and scaling is found to occur over a large H_{c2}(T) range.



قيم البحث

اقرأ أيضاً

The full H-T phase diagram in the nematic superconductor FeSe is mapped out using specific-heat and thermal-expansion measurements down to 0.7 K and up to 30 T for both field directions. A clear thermodynamic signal of an underlying vortex-melting tr ansition is found in both datasets and could be followed down to low temperatures. The existence of significant Gaussian thermal superconducting fluctuations is demonstrated by a scaling analysis, which also yields the mean-field upper critical field Hc2(T). For both field orientations, Hc2(T) shows Pauli-limiting behavior. Whereas the temperature dependence of the vortex-melting line is well described by the model of Houghton et al., Phys. Rev. B 40, 6763 (1989) down to the lowest temperatures for H $perp$ FeSe layers, the vortex-melting line exhibits an unusual behavior for fields parallel to the planes, where the Pauli limitation is much stronger. Here, the vortex-melting anomaly is only observed down to T*= 2-3 K, and then merges with the Hc2(T) line as predicted by Adachi and Ikeda, Phys. Rev. B 68 184510 (2003). Below T*, Hc2(T) also exhibits a slight upturn possibly related to the occurence of a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state.
Inverse melting, in which a crystal reversibly transforms into a liquid or amorphous phase upon decreasing the temperature, is considered to be very rare in nature. The search for such an unusual equilibrium phenomenon is often hampered by the format ion of nonequilibrium states which conceal the thermodynamic phase transition, or by intermediate phases, as was recently shown in a polymeric system. Here we report a first-order inverse melting of the magnetic flux line lattice in Bi2Sr2CaCu2O8 superconductor. At low temperatures, the material disorder causes significant pinning of the vortices, which prevents observation of their equilibrium properties. Using a newly introduced vortex dithering technique we were able to equilibrate the vortex lattice. As a result, direct thermodynamic evidence of inverse melting transition is found, at which a disordered vortex phase transforms into an ordered lattice with increasing temperature. Paradoxically, the structurally ordered lattice has larger entropy than the disordered phase. This finding shows that the destruction of the ordered vortex lattice occurs along a unified first-order transition line that gradually changes its character from thermally-induced melting at high temperatures to a disorder-induced transition at low temperatures.
165 - M. Reibelt , N. Toyota 2012
The melting of the magnetic vortex lattice has been observed in high-Tc superconductors in many experiments by different groups and is regarded as confirmed. To date, only one group claims to have observed the vortex-lattice melting in the low-Tc sup erconductor Nb3Sn in specific-heat measurements. We measured the same Nb3Sn single crystal with a differential-thermal analysis method. We report on the absence of any sign of vortex-lattice melting in our data and discuss the possible reasons for this discrepancy. In addition we confirm the observation of a small peak-like anomaly near the transition to superconductivity which is likely related to thermal fluctuations.
99 - H. K. Mak , P. Burger , L. Cevey 2013
In cuprate high-temperature superconductors the small coherence lengths and high transition termperatures result in strong thermal fluctuations, which render the superconducting transition in applied magnetic fields into a wide continuous crossover. A state with zero resistance is found only below the vortex melting transition, which occurs well below the onset of superconducting correlations. Here we investigate the vortex phase diagram of the novel Fe-based superconductor in form of a high-quality single crystal of Ba0.5K0.5Fe2As2, using three different experimental probes (specific heat, thermal expansion and magnetization). We find clear thermodynamic signatures of a vortex melting transition, which shows that the thermal fluctuations in applied magnetic fields also have a considerable impact on the superconducting properties of iron-based superconductors.
Vortices in topological superconductors are predicted to host Majorana bound states (MBSs) as exotic quasiparticles. In recent experiments, the spatially non-split zero-energy vortex bound state in topological superconductors has been regarded as an essential spectroscopic signature for the observation of MBSs. Here, we report the observation of anisotropic non-split zero-energy vortex bound states in a conventional elemental superconductor with a topologically trivial band structure using scanning tunneling microscopy and spectroscopy. The experimental results, corroborated by quasi-classical theoretical calculations, indicate that the non-split states directly reflect the quasiparticle trajectories governed by the surface electronic structure. Our study implies that non-split zero-energy states are not a conclusive signature of MBSs in vortex cores, stimulating a revision of the current understanding of such states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا