We present ultradeep optical spectroscopy obtained with FORS2 on VLT of seven Lyman-break galaxy (LBG) candidates at z>6.5 selected in the GOODS-S field from Hawk-I/VLT and WFC3/HST imaging. For one galaxy we detect a low significance emission line (S/N< 7), located at 9691.5 +/- 0.5A and with flux 3.4 x 10^(-18)erg/cm^2/s. If identified as Lyman alpha, it places the LBG at redshift z=6.972+/- 0.002, with a rest-frame equivalent width EW}=13A. Using Monte Carlo simulations and conservative EW distribution functions at 2<z<6, we estimate that the probability of observing no galaxies in our data with S/N>10 is ~ 2%, and that of observing only one galaxy out of seven with S/N=5 is ~4%, but these can be as small as ~1E-3, depending on the details of the EW distribution. We conclude that either a significant fraction of the candidates is not at high redshift or that some physical mechanism quenches the Lyman alpha emission emerging from the galaxies at z>6.5, abruptly reversing the trend of the increasing fraction of strong emitters with increasing redshift observed up to z~ 6.5. We discuss the possibility that an increasingly neutral intergalactic medium is responsible for such quenching.