ترغب بنشر مسار تعليمي؟ اضغط هنا

Coulomb Drag of Massless Fermions in Graphene

185   0   0.0 ( 0 )
 نشر من قبل Emanuel Tutuc
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using a novel structure, consisting of two, independently contacted graphene single layers separated by an ultra-thin dielectric, we experimentally measure the Coulomb drag of massless fermions in graphene. At temperatures higher than 50 K, the Coulomb drag follows a temperature and carrier density dependence consistent with the Fermi liquid regime. As the temperature is reduced, the Coulomb drag exhibits giant fluctuations with an increasing amplitude, thanks to the interplay between coherent transport in the graphene layer and interaction between the two layers.



قيم البحث

اقرأ أيضاً

Coulomb drag between two unhybridized graphene sheets separated by a dielectric spacer has recently attracted considerable theoretical interest. We first review, for the sake of completeness, the main analytical results which have been obtained by ot her authors. We then illustrate pedagogically the minimal theory of Coulomb drag between two spatially-separated two-dimensional systems of massless Dirac fermions which are both away from the charge-neutrality point. This relies on second-order perturbation theory in the screened interlayer interaction and on Boltzmann transport theory. In this theoretical framework and in the low-temperature limit, we demonstrate that, to leading (i.e. quadratic) order in temperature, the drag transresistivity is completely insensitive to the precise intralayer momentum-relaxation mechanism (i.e. to the functional dependence of the scattering time on energy). We also provide analytical results for the low-temperature drag transresistivity for both cases of thick and thin spacers and for arbitrary values of the dielectric constants of the media surrounding the two Dirac-fermion layers. Finally, we present numerical results for the low-temperature drag transresistivity in the case in which one of the media surrounding the Dirac-fermion layers has a frequency-dependent dielectric constant. We conclude by suggesting an experiment that can potentially allow for the observation of departures from the canonical Fermi-liquid quadratic-in-temperature behavior of the transresistivity.
Recent years have seen a surge of interest in studies of hydrodynamic transport in electronic systems. We investigate the electron viscosity of metals and find a new component that is closely related to Coulomb drag. Using the linear response theory, viscosity, a transport coefficient for momentum, can be extracted from the retarded correlation function of the momentum flux, i.e., the stress tensor. There exists a previously overlooked contribution to the shear viscosity from the interacting part of the stress tensor which accounts for the momentum flow induced by interactions. This contribution, which we dub drag viscosity, is caused by the frictional drag force due to long-range interactions. It is therefore linked to Coulomb drag which also originates from the interaction induced drag force. Starting from the Kubo formula and using the Keldysh technique, we compute the drag viscosity of 2D and 3D metals along with the drag resistivity of double-layer 2D electronic systems. Both the drag resistivity and drag viscosity exhibit a crossover from quadratic-in-T behavior at low temperatures to a linear one at higher temperatures. Although the drag viscosity appears relatively small compared with the normal Drude component for the clean metals, it may dominate hydrodynamic transport in some systems, which are discussed in the conclusion.
Coulomb drag is a process whereby the repulsive interactions between electrons in spatially separated conductors enable a current flowing in one of the conductors to induce a voltage drop in the other. If the second conductor is part of a closed circ uit, a net current will flow in that circuit. The drag current is typically much smaller than the drive current owing to the heavy screening of the Coulomb interaction. There are, however, rare situations in which strong electronic correlations exist between the two conductors. For example, bilayer two-dimensional electron systems can support an exciton condensate consisting of electrons in one layer tightly bound to holes in the other. One thus expects perfect drag; a transport current of electrons driven through one layer is accompanied by an equal one of holes in the other. (The electrical currents are therefore opposite in sign.) Here we demonstrate just this effect, taking care to ensure that the electron-hole pairs dominate the transport and that tunneling of charge between the layers is negligible.
We present the first experimental study of mesoscopic fluctuations of Coulomb drag in a system with two layers of composite fermions, which are seen when either the magnetic field or carrier concentration are varied. These fluctuations cause an alter nating sign of the average drag. We study these fluctuations at different temperatures to establish the dominant dephasing mechanism of composite fermions.
The recent theoretical prediction and experimental realization of topological insulators (TI) has generated intense interest in this new state of quantum matter. The surface states of a three-dimensional (3D) TI such as Bi_2Te_3, Bi_2Se_3 and Sb_2Te_ 3 consist of a single massless Dirac cones. Crossing of the two surface state branches with opposite spins in the materials is fully protected by the time reversal (TR) symmetry at the Dirac points, which cannot be destroyed by any TR invariant perturbation. Recent advances in thin-film growth have permitted this unique two-dimensional electron system (2DES) to be probed by scanning tunneling microscopy (STM) and spectroscopy (STS). The intriguing TR symmetry protected topological states were revealed in STM experiments where the backscattering induced by non-magnetic impurities was forbidden. Here we report the Landau quantization of the topological surface states in Bi_2Se_3 in magnetic field by using STM/STS. The direct observation of the discrete Landau levels (LLs) strongly supports the 2D nature of the topological states and gives direct proof of the nondegenerate structure of LLs in TI. We demonstrate the linear dispersion of the massless Dirac fermions by the square-root dependence of LLs on magnetic field. The formation of LLs implies the high mobility of the 2DES, which has been predicted to lead to topological magneto-electric effect of the TI.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا