ﻻ يوجد ملخص باللغة العربية
It is a well established empirical fact that the surface density of the star formation rate, Sigma_SFR, strongly correlates with the surface density of molecular hydrogen, Sigma_H2, at least when averaged over large (~kpc) scales. Much less is known, however, if (and how) the Sigma_SFR-Sigma_H2 relation depends on environmental parameters, such as the metallicity or the UV radiation field in the interstellar medium (ISM). Furthermore, observations indicate that the scatter in the Sigma_SFR-Sigma_H2 relation increases rapidly with decreasing averaging scale. How the scale-dependent scatter is generated and how one recovers a tight ~ kpc scale Sigma_SFR-Sigma_H2 relation in the first place is still largely debated. Here, these questions are explored with hydrodynamical simulations that follow the formation and destruction of H2, include radiative transfer of UV radiation, and resolve the ISM on ~60 pc scales. We find that within the considered range of H2 surface densities (10-100 Msun/pc^2) the Sigma_SFR-Sigma_H2 relation is steeper in environments of low metallicity and/or high radiation fields (compared to the Galaxy), that the star formation rate at a given H2 surface density is larger, and the scatter is increased. Deviations from a universal Sigma_SFR-Sigma_H2 relation should be particularly relevant for high redshift galaxies or for low-metallicity dwarfs at z~0. We also find that the use of time-averaged SFRs produces a large, scale dependent scatter in the Sigma_SFR-Sigma_H2 relation. Given the plethora of observational data expected from upcoming surveys such as ALMA the scale-scatter relation may indeed become a valuable tool for determining the physical mechanisms connecting star formation and H2 formation.
We present new accurate measurements of the physical properties of a statistically significant sample of 103 galaxies at z~2 using near-infrared spectroscopy taken as part of the 3D-HST survey. We derive redshifts, metallicities and star formation ra
The growth of large-scale cosmic structure is a beautiful exemplification of how complexity can emerge in our Universe, starting from simple initial conditions and simple physical laws. Using {enzo} cosmological numerical simulations, I applied tools
Observations of local star forming galaxies have revealed a correlation between the rate at which galaxies form stars and their X-Ray luminosity. We combine this correlation with the most recent observational constraints on the integrated star format
Massive galaxy clusters with cool-cores typically host diffuse radio sources called mini-haloes, whereas, those with non-cool-cores host radio haloes. We attempt to understand the unusual nature of the cool-core galaxy cluster CL1821+643 that hosts a
Deep Herschel imaging and 12CO(2-1) line luminosities from the IRAM PdBI are combined for a sample of 17 galaxies at z>1 from the GOODS-N field. The sample includes galaxies both on and above the main sequence (MS) traced by star-forming galaxies in