ﻻ يوجد ملخص باللغة العربية
At low volume fraction, disordered arrangements of frictionless spheres are found in un--jammed states unable to support applied stresses, while at high volume fraction they are found in jammed states with mechanical strength. Here we show, focusing on the hard sphere zero pressure limit, that the transition between un-jammed and jammed states does not occur at a single value of the volume fraction, but in a whole volume fraction range. This result is obtained via the direct numerical construction of disordered jammed states with a volume fraction varying between two limits, $0.636$ and $0.646$. We identify these limits with the random loose packing volume fraction $rl$ and the random close packing volume fraction $rc$ of frictionless spheres, respectively.
We perform computational studies of repulsive, frictionless disks to investigate the development of stress anisotropy in mechanically stable (MS) packings. We focus on two protocols for generating MS packings: 1) isotropic compression and 2) applied
We present simulation results on the properties of packings of frictionless spherocylindrical particles. Starting from a random distribution of particles in space, a packing is produced by minimizing the potential energy of inter-particle contacts un
By calculating the linear response of packings of soft frictionless discs to quasistatic external perturbations, we investigate the critical scaling behavior of their elastic properties and non-affine deformations as a function of the distance to jam
Contact breaking and Hertzian interactions between grains can both give rise to nonlinear vibrational response of static granular packings. We perform molecular dynamics simulations at constant energy in 2D of frictionless bidisperse disks that inter
We focus on the response of mechanically stable (MS) packings of frictionless, bidisperse disks to thermal fluctuations, with the aim of quantifying how nonlinearities affect system properties at finite temperature. Packings of disks with purely repu