ﻻ يوجد ملخص باللغة العربية
In this paper we numerically solve the eigenvalue problem $Delta u + lambda u = 0$ on the fractal region defined by the Koch Snowflake, with zero-Dirichlet or zero-Neumann boundary conditions. The Laplacian with boundary conditions is approximated by a large symmetric matrix. The eigenvalues and eigenvectors of this matrix are computed by ARPACK. We impose the boundary conditions in a way that gives improved accuracy over the previous computations of Lapidus, Neuberger, Renka & Griffith. We extrapolate the results for grid spacing $h$ to the limit $h rightarrow 0$ in order to estimate eigenvalues of the Laplacian and compare our results to those of Lapdus et al. We analyze the symmetry of the region to explain the multiplicity-two eigenvalues, and present a canonical choice of the two eigenfunctions that span each two-dimensional eigenspace.
We apply the Gradient-Newton-Galerkin-Algorithm (GNGA) of Neuberger & Swift to find solutions to a semilinear elliptic Dirichlet problem on the region whose boundary is the Koch snowflake. In a recent paper, we described an accurate and efficient met
Let $Gamma$ be a co-compact Fuchsian group of isometries on the Poincare disk $DD$ and $Delta$ the corresponding hyperbolic Laplace operator. Any smooth eigenfunction $f$ of $Delta$, equivariant by $Gamma$ with real eigenvalue $lambda=-s(1-s)$, where
We study the discretization of a Dirichlet form on the Koch snowflake domain and its boundary with the property that both the interior and the boundary can support positive energy. We compute eigenvalues and eigenfunctions, and demonstrate the locali
We give a new proof of a well-known result of Koch and Tataru on the well-posedness of Navier-Stokes equations in $R^n$ with small initial data in $BMO^{-1}(R^n)$. The proof is formulated operator theoretically and does not make use of self-adjointness of the Laplacian.
We seek solutions $uinR^n$ to the semilinear elliptic partial difference equation $-Lu + f_s(u) = 0$, where $L$ is the matrix corresponding to the Laplacian operator on a graph $G$ and $f_s$ is a one-parameter family of nonlinear functions. This arti