ﻻ يوجد ملخص باللغة العربية
A new full-sky catalog of Radial Velocity standard stars is being built for the determination of the Radial Velocity Zero Point of the RVS on board of Gaia. After a careful selection of 1420 candidates matching well defined criteria, we are now observing all of them to verify that they are stable enough over several years to be qualified as reference stars. We present the status of this long-term observing programme on three spectrographs : SOPHIE, NARVAL and CORALIE, complemented by the ELODIE and HARPS archives. Because each instrument has its own zero-point, we observe intensively IAU RV standards and asteroids to homogenize the radial velocity measurements. We can already estimate that ~8% of the candidates have to be rejected because of variations larger than the requested level of 300 m/s.
Aims. The Radial Velocity Spectrometer (RVS) on board the ESA satellite mission Gaia has no calibration device. Therefore, the radial velocity zero point needs to be calibrated with stars that are proved to be stable at a level of 300 m/s during the
The Radial Velocity Spectrometer (RVS) on board of Gaia will perform a large spectroscopic survey to determine the radial velocities of some 1.5x10^8 stars. We present the status of ground-based observations of a sample of 1420 candidate standard sta
The calibration of the Radial Velocity Spectrometer (RVS) onboard the ESA Gaia satellite (to be launched in 2012) requires a list of standard stars with a radial velocity (RV) known with an accuracy of at least 300 m/s. The IAU Commission 30 lists of
Among the myriad of data collected by the ESA Gaia satellite, about 150 million spectra will be delivered by the Radial Velocity Spectrometer (RVS) for stars as faint as G_RVS~16. A specific stellar parametrization will be performed for most of these
We present a new catalogue of 18 080 radial velocity standard stars selected from the APOGEE data. These RV standard stars are observed at least three times and have a median stability ($3sigma_{rm RV}$) around 240 m s$^{-1}$ over a time baseline lon